ThinkdJS 2.1 Documentation

Getting Started

Introduction

ThinkJS is the first Node.js MVC framework that supporting use full ES6/7 features to develop Node.js application. By using async/await in ES7 or */yield in ES6, ThinkJS
totally resovled the hard problem of asynchronous callbacks nesting hell. It absorbs the design and ideas of lots of other framworks around the world, and makes develop Node.js
projects faster and efficient than ever before.

Using ES6/7 features to build projects is very efficent, that must be the trend. The lastest version of Node.js has supported the features of ES6 more friendly, though not all
features. At this time, Babel can help us to compile ES6 code to ES5 code.

Features

Using ES6/7 features

Babel compile our code to ES5 so we don’t need worry about the browser compatibility. So we can resolve the asynchronous callbacks problem by using async/await or
*/yield features.

JavaScript
//user controller, home/controller/user.js

export default class extends think.controller.base
//login action
async loginAction(self
//if it's a get request, then display them
if(this.isGet

return this.display

//here you can use post() method to get all request data which has checked in logic
let data = this.post

let md5 = think.md5('think_' + data.pwd

//take username and encrypted password to match data in database

let result = await this.model('user').where({name: data.name, pwd: md5}).find

//if no result found, it means username or password error

if(think.isEmpty(result

return this.fail('login fail'
//write user info into session after reciving user infomation

await this.session('userInfo', result

return this.success

We've used ES6 features like class , export , let and ES7 featureslike async/await inthis example. Database queries and session writing were all asynchronous
actions, but here we are writing sync code to handle them with async/await . Last, it can run in Node.js environment stably after Babel compiling.

Supports TypeScript

TypeScript is an free and open source programming language designed by Microsoft. TypeScript is a typed superset of JavaScript that it has some useful function in large project
such as optional static type.

ThinkJS 2.1 has supported TypeScript, the code will be auto compiled and updated during the develop process. You can know more from here,

Supports variant project structures and environments
When using ThinkJS, you can apply single module mode, general mode or mutiple modules mode, and to develop projects with it's complexity range from very low to very high.

By default, there are three kinds of project environments: development , testing and production , you can use different configuration in different environment to support
different requests. You can also custom and extend them in your projects.

Supports Abundant Database Type

ThinkJS supports MysoL , MongoDB and soLite . It encapsulates many APIs of the database operations, without having to manually stitching SQL statements. You can
automatically prevent SQL injection and other vulnerabilities. It also supports transaction and association and other advanced features.

Automatic Updating

http://babeljs.io/
http://www.typescriptlang.org/
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/typescript.html

ThinkJS has a mechanism that could automatically update codes after source files being modified without resort to restart Node.js server and other third party modules.
Automatic REST API Creation
You canuse thinkjs command to create REST API automatically without writing any extra code. Meanwhile, you can also easily add filter or auth check if you want.
Supports multiple WebSocket libraries
ThinkJS supports some common WebSocket libraries like socket.io and sockijs , and packages them to provide the consistent APIs to developers.
Plentiful Test Cases
ThinkdS includes 1500+ test cases with the code coverage at 95%. Every change has its test case to insure the framework functions well.
Supports CLI to run cron job
Action in ThinkJS can both response to user request and the CLI invoke. With this feature, we can excute cron job more easily.
Hooks and Middlewares
ThinkJS supports Hooks and Middlewares, they make the requests handling much more flexible.
Detailed log
ThinkdS builds-in the detailed log function, it makes us read log and track problems easily.

HTTP request log

[2015-10-12 14:10:03] [HTTP] GET /favicon.ico 200 5ms
[2015-10-12 14:10:11] [HTTP] GET /zh-cn/doc.html 200 11lms
[2015-10-12 14:10:11] [HTTP] GET /static/css/reset.css 200 3ms

Socket connection log

[2015-10-12 14:13:54] [SOCKET] Connect mysql with mysql://root:root@127.0.0.1:3306

Error log

[2015-10-12 14:15:32] [Error] Error: ER_ACCESS_DENIED_ERROR: Access denied for user 'root3'@'localhost' (using password: YES)
[2015-10-12 14:16:12] [Error] Error: Address already in use, port:8360. http://www.thinkjs.org/doc/error.html#EADDRINUSE
Configurable Routers

The routers ThinkJS supported include regex router, rule router and static router, and router can be set based on modules. That’s very helpful for us to make URLs more simple
and reserve their high performance at the same time.

Supports international and custom themes

ThinkdJS provides us very simple methods to implement i18n and custom themes.

Comparing With Other Frameworks

Express/Koa

Express and koa are simple frameworks, they all only provide the very basic functions. So for developing complex projects, one must introduces the third party plugins. Though
small cores often mean big flexibility, the introducing of other plugins would increases the project’s complexity. Besides, no one can ensure all the third party plugins are safety and
efficient.

Koa 1.x solved asynchronous callbacks problem by using */yield feature. Butthe newer async/await feature will replace */yield atlast. ThinkJS supports both features
well.

On the other hand, ThinkJS choosed to provide the full set of solutions. But not only that, in ThinkJS, every function has been strictly tested for performance optimazition and
prevent mermory leaks. And the important thing is that we can use all ES6/7 feature in the project directly.

Sails

Sails is another Node.js framework that also provides complete solution. It's convinient because of the encapsulation of databases, REST APIs and security features.

But Sails still uses callbacks in asynchronous code. That’s too hard to develop, and can’t use ES6/7 fetaure naturally in the projects.

Disadvantages
Even though ThinkJS has many advantages, it has also a few disadvantages too, for example:

e ThinkJS is a relatively new framework, the community is not strong enough.
e ThinkJS is short of large scale applications.

Performance Comparsion

To evaluate whether a framework is good or not, the features it provided and the performance it could reach are qually important. Although ThinkJS more suits for large projects,
features and complexity far exceeds Express and Koa, but its performance is not much less than them.

tips : The above data using distributed stress testing system to test.

All we can see is that there has just little distance between ThinkJS and Express/Koa. ThinkJS and Sails.js both more suit for large projects, but ThinkJS has higher performance
than Sails.js.

You can go htips:/github.com/thinkjs-team/thinkjs-performance-test to clone all testing code and run it locally. If you use ab testing tool, note that it is instability on Mac.

ES6/7 reference documentation
You can read more about ES6/7 features here:

o learn-es2015

e ECMAScript 6 Guide

o ECMAScript 6 Features

o ECMAScript 6 compatibility table
o ECMAScript 7 Features

o ECMAScript 7 compatibility table

Create project

Install Node.js
ThinkdJS is a Node.js MVC framework, it requires Node.js before you run it. You can install Node.js by go to https://nodejs.org to download the lastest installation.
After installation, type node -v inyour terminal. If it outputs version number, it installs success.

ThinkdS requires the version of Node.js >=0.12.0 , if your version lower than it, you need update your Node.js, or you can’t start the service. we recommend use Node.js
4.2.1 .

Install ThinkJS

Install ThinkdJS by following command:

Bash
npm install thinkjs@2 -g --verbose
After installation, run thinkjs --version oOr thinkjs -V to check version number.
Tips: If you have installed ThinkJS 1.x before, you need remove it by npm uninstall -g thinkjs-cmd first of all.
Update ThinkJS
Update ThinkJS globally by run the following command:
Bash
npm install -g thinkjs@2
Update ThinkJS in you current project by run the following command:
Bash

npm install thinkjs@2

Create Project

After installation, you can create a new ThinkJS project by run the following command:

https://github.com/thinkjs-team/thinkjs-performance-test
http://babeljs.io/docs/learn-es2015/
http://es6.ruanyifeng.com/
https://github.com/lukehoban/es6features
http://kangax.github.io/compat-table/es6/
https://github.com/hemanth/es7-features
http://kangax.github.io/compat-table/es7/
https://nodejs.org/

thinkjs new project_path; #project_path is the path you want store your project

If you want to use ES6 features in the development, you may want to create the ES6 mode project by use following command:

thinkjs new project_path --es

#project_path is the path you want store your project

If the output is like the following, that means you have created the project successfully:

create : demo

/

create : demo/package.json

create : demo/.thinkjsrc

create : demo/nginx.conf
create : demo/README.md

create : demo/www/

create : demo/www/index.js

create : demo/app

create : demo/app/common/runtime

create : demo/app/common/config

create : demo/app/common/config/config.js

create : demo/app/common/config/view.js

create : demo/app/common/config/db.js

create : demo/app/home/logic

create : demo/app/home/logic/index.js

create : demo/app/home/view

create : demo/app/home/view/index_index.html

enter path:
$ cd demo/

install dependencies:

$ npm install

run the app:
$ npm start

For more details aobut creating project, go to extension function -> ThinkJS command.

Install dependencies

After project creation, go to the project directory and run npm install to install dependencies.

npm install

Compile Project

Bash

Bash

Bash

Since v2.0.6, ThinkJS has built-in the automatical compiling feature, so you don’t need run npm run watch-compile for real time compile anymore. What you only need to do,

is just start your service by run npm start .

Start Project

Run npm start

[2015-09-21 20:
[2015-09-21 20:
[2015-09-21 20:
[2015-09-21 20:
[2015-09-21 20:
[2015-09-21 20:

Access Project

Open your browser and goto http://127.0.0.1:8360 . If you are in a remote machine, you must replace 127.0.0.1 with your remote machine’s IP.

, if terminal returns output like following, it means the service run success.

21

21

:09]
21:
21:
21:
21:
:09]

09]
09]
09]
09]

[THINK]
[THINK]
[THINK]
[THINK]
[THINK]
[THINK]

Project Structure

After creating ThinkJS project, you will get the directory structure something like the following:

Server running at http://127.0.0.1:8360/
ThinkJS Version: 2.0.0

Cluster Status: closed

WebSocket Status: closed

File Auto Reload: true

App Enviroment: development

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/thinkjs_command.html

-- nginx.conf
-- package.json

|-- common

| -- bootstrap
|-- generate_icon.js
*-- middleware.js

-- config

|-- config.js

|-- development.js

*-- production.js

|

|

|

|-- hook.js

|-- locale

| |-- en.js

| “-- zh-cn.js
“-- route.js

-- controller

T-- error.js

“-- runtime

|-- config

|-- controller

| |-- base.js
| T -- index.js
|-- logic

| “-- doc.js
*-- model

|-- common

| |-- error_400.html
| |-- error_403.html
| |-- error_404.html
| |-- error_500.html
| “-- error_503.html

|-- doc_index.html
|-- doc_search.html

|-- inc

| |-- footer.html

| ~-- header.html

| -- index_changelog.html
|-- index_demo.html

" -- index_index.html
|-- favicon.ico
|-- index.js
|-- production.js

T-- static

|-- css

tips: Different mode used when creating the project, may result in the slightly different structure.

nginx.conf
This is the nginx’s configuration file. When deploy your project to the production environment, we recommend you using nginx as the reverse proxy.

Src

src folder holds all of the source files, but you can only have it by using --es6 option when create prjects. After start project, the source files in src/ will be compiled
automatically into the app/ folder with same name.

src/common
You should place the common module files into this folder, the so-called common files used to store the code logic that could be used all around the project.

src/common/bootstrap

Files in this folder will be autoload when project bootstrapping, so you don’t need to require them manually. You can define global functions, register middlewares by using this
folder.

Defining global functions

JavaScript
// src/common/bootstrap/fn.js
global.formatDate = obj =>
We defined a global function formatbate here, you can call it anywhere in the project after define it here.
Register Middlewares
JavaScript
// src/common/bootstrap/middleware.js
think.middleware('replace_image', http =>
We defined a middleware replace image here, then you can register it in the configure file hook.js .
tips: bootstrap can only stay in common module.
src/common/config
You can place the common config files here. Bear in mind, the route.js, hook.js and locale.js must stay within this folder.
JavaScript

‘use strict’
/x%
* config
*/
export default
//key: value

src/common/controller

Within this folder, you should put the common controller files. For example, the error.js has designed some different error handling behaviors, you can modify it or add other
controller according to the project requirements.

src/common/runtime

This is a temp folder to store for example cache files, upload files and other files at the runtime.

src/home

home module is a default module for your project. You can change your default module to other directory by add default module option and assign a value to it in

src/common/config/config.js

src/home/logic

Before every operation execution, it is possible to validate something in advance here, so as to decrease the complexity of the actions in the controllers. For example, we can
validate whether the parameters meet the requirements, the input data are acceptability, or current user have the access to do something.

JavaScript
‘use strict’

/%%
* logic
* @aram {} []
* @return {} [1
*/
export default class extends think.logic.base

/**

* index action logic

* @return {} []

*/

indexAction

src/home/controller

Controller folder. Each url has an matched action within the matched controller .

JavaScript
‘use strict'

import Base from './base.js
export default class extends Base
/**
* index action
* @return {Promise} []
*/
indexAction

//auto render template file index_index.html

return this.display

src/home/model

Models to handle database operations.

view

The view folder used to store template files. If you need support i18n or multiple themes, you should create the sub-folders respectively.

www

Our project’s root which we have to access, nginx’s configure root will be set here.

www/index.js
Our project’s entry file in development mode, it can be modified as the project’s need. When in production environment, the entry file will be www/production.js .

The content of index.js is something like this:

JavaScript
var thinkjs = require('thinkjs
var path = require('path’
var rootPath = path.dirname(__dirname
var instance = new thinkjs
APP_PATH: rootPath + '/app'
ROOT_PATH: rootPath

RESOURCE_PATH: __dirname

env: 'development’

instance.run

www/static

Holding the static files.
Specification

File Path Must Be Lowercased
Generally, ThinkJS projects would be deployed in Linux environment, although they are developed in Windows or Mac OSX environment.
In Windows and Mac, file paths are not case-sensitive, but in Linux they are case-sensitive. This may result in errors after deployed projects online.

To avoid this happen, it’s recommended that all file paths use lowercase. This way, ThinkJS will scan your project paths after service started, and return warning messages like this
if it found uppercase paths:

[2015-10-13 10:36:59] [WARNING] filepath “admin/controller/apiBase.js has uppercases.

Indent Two Spaces

Sometimes, complicated logic will result in multi-levels indent in Node.js. We advice each line intent two spaces to prevent indent too deep.

Use ES6 Grammars

ES6 has lots of new features that can make our code simple and effective. Node.js has supported much of ES6 features in the latest version. You can use Babel compile your code
to support all features.

Do Not Use constructor Method

If you use ES6’s class ,the constructor method can be used to make something auto run when it's instantiated. For example:

JavaScript
export default class think.base
constructor
But if you are not using ES6’s class grammar, you should not use constructor method.
ThinkdS provide init method to replace constructor . It will called automatically whether you using class or not.
JavaScript

export default class think.base

/**
* Initial method, called when class instanced
* @return {} []

*/

init

Tips: All ThinkdS class will extend the base class think.base .

Compile by Babel
The latest version of Node.js has supported most of ES6 features, but some of these features (e.g. */yield) have not optimized in V8.

We advise you to compile your project code with Babel. Babel can identify almost all ES6 and ES7 grammar, and the performance of compiled code is higher than native-
supporting.

Replace */yield with async/await

*/yield is an ES6 feature to resolve async callback issue, and ES7 replace it with async/await .
Comparedto async/await , */yield has four shortcomings:

1. */yield return a generator that need a third module such as co to run.

2. +*/yield can'tuse with Arrow Function together.

3. Whenone +*/yield need call another */yield ,we needuse yield * command

4. V8 has not made optimazition for */yield , so we recommend you to use Babel. With Babel, you can use ES7 async/await toreplace */yield .

Upgrading Guide
This documentation is a guide about how to update ThinkJS from 2.0 to 2.1, look at here if you want to update from 1.x to 2.0.

The version 2.1 is compatible with version 2.0. The new version has appended more functions and changed something lightly, you can reference it's Changelog to know what has
changed.

Updating From 2.0 to 2.1

Update ThinkJS Dependency Versions
Change Thinkjs’s versionto 2.1.x in package.json.
Updating Babel to version 6

ThinkJS has used Babel 5 for compiling, and now it has updated to 6 in the ThinkJS 2.1, so we need to modify Babel’s version.

You can remove all dependencies about Babel in package. json , and append the following dependencies:

file:///doc/2.0/upgrade.html
file:///changelog.html

JavaScript
"dependencies"

"babel-runtime": "6.x.x"
"devDependencies"

"babel-cli": "6.x.x"

"babel-preset-es2015-loose": "6.x.x"

"babel-preset-stage-1": "6.x.x"

"babel-plugin-transform-runtime": "6.x.x"

"babel-core": "6.x.x"

Then, run npm install to install new dependencies. Delete app/ folder and run npm start to start project.

Change Compiling Command

Change compiling command in package.json to

babel --presets es2015-loose,stage-1 --plugins transform-runtime src/ --out-dir app/ --retain-lines ,

Upgrading Projects To Use TypeScript

You can see here to study how to change your development language to typescript.

Common question

Why We Recommend You Use ES6/7 Grammar

ES6/7 support a mass of new features that bring us great convenience and efficiency. For example, we use ES6 +*/yield and ES7 async/await feature to resolve async
callback hell problem. And use arrow function to resolve this scope problem. Oruse class grammar to resolve class inherit problem.

Although Node.js hasn’t support all of those features, we can use them in Node.js stable environment in advance with the help of Babel. It’s so good that we can enjoy the
convenience and efficiency because of those new features.

Why Run npm run watch-compile Can’t Stop the Process

Version 2.0.6 has removed this command, beacause this version has supported auto-compile featrue, so all you need to do is to start the service by run npm start .

Do We Need Restart Service After We Modified Something

Due to the working manner of Node.js, you must restart the service to make the modification to ta effect by default. It's so inconvenience to us. New version of ThinkJS supports
auto update file mechanism to apply modification without restart.

Auto update may influence performance, so this feature turns on only in development mode. For online code, we advise you use pm2 module.
How to Change the Structure of View Folder

By default, view files' path is view/[module]/[controller] [action].html . In this example, controller and action was join by _ . If you want change joinerto / , you can
change configuration file src/common/config/view.js like this:

JavaScript
export default
file_depr: '/', //change joiner to /
How To Open Multiple Threads
For online code, you can improve its performance by make use of multi-core CPU to heighten concurrence computing.
You can open src/common/config/env/production.js , and add the following option to it:
JavaScript

export default

cluster_on: true //turn on cluster

How To Modify Request Timeout

The default timeout in ThinkJS is 120 seconds, you can modify it by open src/common/config/config.js , and add the following option:

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/typescript.html#toc-600

JavaScript
export default

timeout: 30, // Change timeout to 3@ seconds

How To Catch Exception

Using JS’s try/catch can't catching exceptions come out of asynchronous code, but after using async/await you can use it:

JavaScript
export default class extends think.controller.base

async indexAction
try
await this.getFromAPI1
await this.getFromAPI2
await this.getFromAPI3
catch(err
//err.message is error message

return this.fail(err.message

Although you can catch the exception, but you can’t know which code has triggered it.
In practice, this is not convenient because you ofen need to give error messages to users based on the errors.

At this time, you can check the specific error through single async request:

JavaScript
export default class extends think.controller.base

async indexAction
//ignore this error
await this.getFromAPI1 catch =>
//return false when exception occurs
let result = await this.getFromAPI2 catch => false
if(result === false
return this.fail('API2 ERROR'

By returning different values for each exception, you can then return different error messages to users.

Ignore Exception

When using async/await , if Promise returned a rejected Promise, an exception will be throwed. If it is not important and you want to ignore it, you can make the catch method
to return a resolve Promise:

JavaScript
export default class extends think.controller.base

async indexAction
//returns undefined mean this exception will be ignore

await this.getAPI catch =>

PREVENTNEXTPROCESS

After calling some methods such as success , you may find an error message named PREVENT NEXT PROCESS in console. This error is introduced by ThinkJS to prevent from
the running of subsequent processes. If you want to check PREVENT NEXT PROCESS in catch method, you can use think.isPrevent :

JavaScript
module.exports = think.controller

indexAction(self
return self.getData then(function(data
return self.success(data
catch(function(err
//ignore PREVENT_NEXT_PROCESS error
if(think.isPrevent(err

return

console.log(err.stack

Another handling method: don’t use return before methond such as success , then there has no this errorin catch .

Parallel Processing

While using sync/await , your code is excuted serially. But mostly you want to excute parallely to have higher execution efficiency. For this, you can use pPromise.all to
implement it.

JavaScript
export default class extends think.controller.base

async indexAction
let p1 = this.getServiceDatal
let p2 = this.getAPIData2
let [plData, p2Data] = await Promise.all([pl, p2

pl and p2 are processed parallelly and then get both data by using Promise.all .

Output Images

If your projects need to output data like images and other file types, you can do it as following:

JavaScript
export default class extends think.controller.base

imageAction
//image buffer data, you can read it locally or remotely
let imageBuffer = new Buffer
this.type('image/png’
this.end(imageBuffer

Using Different Configuration In Different Environments

Environments varies, the configuration may be vary too. For example, development environment and production environments should use different database configurations. You
can modify src/common/config/env/[env].js toimplement this. The option [env] has three default values: development , testing and production .

If you want to config production environment database, you can modify src/common/config/env/production.js :

JavaScript
export default

db //there has one level named db
type: 'mysql’
adapter
mysql
host
port

You can know more about configuration in here,

To Extend Template In nunjucks

Because of root path setting in nunjucks, you should using relative path when you want to extend template:

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/config.html#db

Markup
{% extends "./parent.html" %} //same level parent.html file

{% extends "../layout.html" %} //parent level layout.html file

To Allow Action Calls Only In CLI

Action can be excuted by user requests or CLI calls. You can use iscli to judge when you want to allow Action call in CLI only:

JavaScript
export default class extends think.controller.base {

indexAction(){
//ban URL request this Action
if(!this.isCli()){
this.fail('only allow invoked in cli mode');

Invokes Controller/Action/Model Across Modules

You may have some requests about calling function across modules when your projects is complicated.
Call Controllers

You can call controller in other modules by using this.controller and pass the second parameter in:

JavaScript
export default class extends think.controller.base {

indexAction(){
//get user controller instance in admin module
let controllerInstance = this.controller('user', 'admin');
//then you can use user controller function after getting instance
let bar = controllerInstance.foo();

5
J

index2Action(){
// or use this simple way
let controllerInstance = this.controller('admin/user');
let bar = controllerInstance.foo();

-

Call Actions

You can call actions in other modules by using this.action :

JavaScript
export default class extends think.controller.base {

async indexAction(){
//get user controller instance in admin module
let controllerInstance = this.controller('user', 'admin');
//call test action in controller, it will also call °__before® and “__after’ magic function automatically.

let data = await this.action(controllerInstance, ‘test')

1
J
async index2Action(){
//you can also assign controller by string

let data = await this.action('admin/user', 'test')

tip :All actions will return Promise object, and it won't call logic when you call action alone.

Call Models

You can call models in other modules by using this.model :

JavaScript
export default class extends think.controller.base

indexAction
//get user model instance in admin module
let modelInstancel = this.model('user’ ‘admin'
// or use this simple type
let modelInstance2 = this.model('admin/user

Advanced

Module

ThinkJS supports a variety of programming modes when creating a project. By default, the new project is consist of modules, and has added the common and home modules
automatically. Each module has itself a separate configuration, controller, view, model and other documents.

Modularization programming makes project structure much clearer. Such as a typical blog system can be divided into front and back modules in general.
Module List

Goes into src/ directory, you can see a list of modules:

drwxr-xr-x 5 welefen staff 170 Aug 18 15:55 common/
drwxr-xr-x 6 welefen staff 204 Sep 8 19:14 home/
Common Module

common module is a universal module that will be commonly used by other modules of the project, it stored some common features, such as general configuration, runtime
directory, startup files, error handling controllers.

NOTE : The controllers under the module does not respond to the user’s request.
Default Module

Default module is the home module. Any requests that could not found corresponding module to process will be handed over to this module to process, so it is a catch all module.

If you want to modify the default module, open src/common/config/config.js , and modify the value of default module :

JavaScript
//The default module's name is changed to blog
export default
default_module: 'blog’
Add Module
Add new module can be done by using thinkjs command.
In current project directory, execute thinkjs module xxx ,you can create a module named xxx .
If the module’s name already exists, you can not create it.
Disable Module
ThinkdS will automatically find and identify modules under the project and assume that all modules are available.
If you want to disable some modules, you can modify the configuration file src/common/config/config.js , add the following configuration:
JavaScript
export default
deny_module_list 'xxx'] //Disable xxx module
Controller

Controller is a collection of same type operations, they respond to same type user requests.

The Definition of Controller

Creating a file src/home/controller/article.js , means that there’s a controller called article inthe home module, and the content of each controller is similar to the

following:

‘use strict'
import Base from './base.js

export default class extends Base
/**
* index action
* @return {Promise} []
*/
indexAction
//auto render template file index_index.html

return this.display

If you do not use ES6 syntax, then the content is similar to the following:

‘use strict’
var Base = require('./base.js

module.exports = think.controller(Base
/**
* index action
* @return {Promise} []
*/
indexAction: function(self
//auto render template file index_index.html

return self.display

NOTE: The Base above represents the definition of a base class, other classes inherit it, so that you can do some general thing in it.

Multi-levels Controller

For complicated projects, only have one level controller may not work well. Right now you can create multiple levels controller, the file
src/home/controller/group/article.js for example will points to the second level controller group/article . Logic and View are the same.

Use Generator Function

You can easily use the generator function to handle asynchronous nesting problems in the controller .

The ES6 Way

‘use strict’
import Base from './base.js

export default class extends Base

/**

* index action

* @return {Promise} []

*/

* indexAction
let model = this.model('user
let data = yield model.select

return this.success(data

Dynamically Create Classes

JavaScript

JavaScript

JavaScript

‘use strict’
var Base = require('./base.js'

module.exports = think.controller(Base
/**
* index action
* @return {Promise} []
*/
indexAction: function *
var model = this.model('user
var data = yield model.select

return this.success(data

Use async/await
With the Babel compilation, you can also use ES7’s

The ES6 Way

‘use strict’
import Base from './base.js

export default class extends Base
/**
* index action
* @return {Promise} []
*/
async indexAction
let model = this.model('user
let data = await model.select

return this.success(data

Dynamic Creation

‘use strict’
var Base = require('./base.js'

module.exports = think.controller(Base
Vet
* index action
* @return {Promise} []
*/
indexAction: async function
var model = this.model('user
var data = await model.select

return this.success(data

init Method

async/await .

JavaScript

JavaScript

JavaScript

The class in ES6 has a constructor method, but the classes that dynamically created do not, in order to perform the initialization uniformly, ThinkdS redefined itas init .

This method is automatically called when the class is instantiated, without manually call needed.

The ES6 Way

W

is
‘use strict’;

import Base from ‘./base.js’;

export default class extends Base {
init(http){

super.init(http); //call super-class’s init method

Dynamically Create Classes

JavaScript
‘use strict'

var Base = require('./base.js

module.exports = think.controller(Base
init: function(http
this.super('init', http); //call super-class's “init® method

When using init method, don't forget to call call super-class’s init method and make sure pass the http in.

Pre-Operation __before

ThinkJS supports pre-operation with the method called _ before , it will be automatically called before a specific Action execution. If the pre-operation prevents subsequent code
continuing to execute, it does not call the specific Action, so you can end request in advance.

The ES6 Way

W

is
‘use strict’;

import Base from ‘./base.js’;

export default class extends Base {
I

* Pre-Operation

* @return {Promise} []

*/

__before(){

Action

A action represents an operation to be performed for response to an user request. Such as if URLis /home/article/detail ,the moduleis /home ,the controller is
article ,andthe Actionis detail , sothe Action to be executed is the detailaction method inthe file src/home/controller/aritcle .

JavaScript
‘use strict’

import Base from './base.js

export default class extends Base
/**
* obtain detailed information
* @return {Promise} []
*/
detailAction(self

If Action name parsed contains _ , it will automatically do the conversion, for the details of specific strategies of the conversion, see Routing -> case.

Post-Operation __after

ThinkJS supports post-operation called after , it will be executed after a specific Action execution. If a specific Action prevents subsequent code continuing to execute, the
post-operation will not be invoked.

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/route.html

No-operation __call

If one controller is found to exist after parsed URL, but the Action does not exist, it will attempt to call the _ call magic method of the controller. This way, we can unifiedly
treated the missing Actions.

JavaScript
‘use strict’

import Base from './base.js
export default class extends Base
J**
* @return {Promise} []

*/
_ call

Error Handling

If URL does not exist, the current user has no permission to do some operations or there are other unusual requests, it will enter the error handling process. ThinkJS itself built a
complete error handling mechanism, for details seeextensions -> error.

Data Validation

Before using the user-submitted data in the controller, it needed to verify its legitimacy. In order to reduce the logic complexity, ThinkJS provides a logic layer that designed to
handle data and permission validation and other related operations.

For more information, please see Extended Functions -> Data Validation.

Variable Assignment and Template Rendering

Controller can do variable assignment and template rendering through assign and display method, specific information can be found here.

Model Instantiation

In controllers, you can quickly get an instance of a model by call this.model method.

JavaScript
export default class extends think.controller.base
indexAction
let model = this.model('user’ //instantiate mode “user

More usage of model method can be found at AP| -> think.http.base.

http Object

When a controller is instantiated, the http will be passedin. The http is a object that ThinkJS repacked for the req and res , itis not built in Node.js.

In Action, it can be obtained by this.http .
JavaScript

'use strict’
import Base from './base.js
export default class extends Base

indexAction
let http = this.http

Details about the properties and methods of http object can be found at AP| -> hitp.

REST API

Sometimes, the project has to provide some REesT interfaces for third party to use, these interfaces are nothing more than the CRUD operations.

If you feel writing these operations by hand is very trouble, ThinkJS provides a REST Controller, that will automatically contains generic CRUD operations. If these actions do not

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/error_handle.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/validation.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/view.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_http_base.html#toc-e2b
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_http.html

satisfy your demand, it can also be customized. Specifically, see here.

The this Scoping Issue

There are often many asynchronous operations in Node.js development, and the common approach is to use a callback function or promise . These treatments will increase a
level of scope, making it impossible to use this directly in the callback function, the simple approach to solve it is to define a variable at the top, this will be assigned to the
variable, and then use the variable in the callback function. Such as:

JavaScript
module.exports = think.controller
indexAction: function
var self = this; // assign the reference of this to self
this.model('user"').find then(function(data
return self.model('article').where({user_id: data.id}).select
then(function(data
self.success(data
Writing var self = this in each Action must be very trouble. To solve this problem, ThinkdS provides a parameter directly in Action, which is equivalent to
var self = this , as follows:
JavaScript
module.exports = think.controller
// here, self is equivalent to var self = this
indexAction: function(self
this.model('user").find then(function(data
return self.model('article').where({user_id: data.id select
then(function(data
self.success(data
Of course, the recommended and better solution is to use the Generator Function and Arrow Function of ES6.
Use Generator Function
JavaScript
export default class extends think.controller.base
* indexAction
let data = yield this.model('user').find
let result = yield this.model('article').where({user_id: data.id select
this.success(result
Use Arrow Function
JavaScript

module.exports = think.controller
indexAction: function
this.model('user"').find().then(data =>
return this.model('article').where({user_id: data.id}).select
then(data =>

this.success(data

Output JSON

Many projects need provide interfaces that output data in JSON format, and there also must be a flag to indicate whether the interface is normal or not. If an exception occurs, the
corresponding error message needs to be output together. The controller provides the this.success and this.fail methods to output interface data.

Output Normal JSON

The normal interface data can be output through this.success method, such as:

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/rest_api.html

JavaScript
export default class extends think.controller.base

indexAction
let data = {name: "thinkjs"
this.success(data

In this example, the outputis {errno: 0, errmsg: "", data: {"name": "thinkjs"}} ,the client can determine whether there is an exception with the current interface

through errno is 0 or not.

Output JSON Contained the Error Message

Interface data contained error messages may output by the this.fail method, such as:

JavaScript
export default class extends think.controller.base
indexAction
this.fail(1000, 'connect error'); //iBEBIFSHEIRES

In this example, the outputis {errno: 1000, errmsg: "connect error"} .When clients found errno is greater than zero, then it know there are exceptions with the
current interface, so it can in turn to get specific error information through errmsg .

Configure Error Number and Error Message

It’s recommended to configurate the error numbers and error messages in one place , then as long as specify error number when outputting, error information based on the error
number will be automatically read out.

Error messages support internationalization, and the configuration is in the file src/common/config/locale/[lang].js . Such as:

JavaScript
export default

10001: 'get data error'

Whit the above configuration, performing this.fail(10001) will automatically get corresponding error message, "get data error" in this case.

Friendly Error Number

Although it can output the correct error number and error message when performing the this.fail (10001) , butwe can not intuitively see what error message corresponding
it.

We recommend you to configure the keys using uppercase strings, and the value is an array with the error number and error message as its elements. Such as:

JavaScript
export default
GET_DATA_ERROR: [1234, 'get data error'] //key WhINASFRE FLILA BN
This way, when you calling this.fail('GETDATA ERROR') , you will automatically get the corresponding error number and error message.
Format Configuration
The keys of the default error number and error message are errno and errmsg respectively. If needed, you can modify the configuration file
src/common/config/error.js to resetthem.
JavaScript
export default
key: 'errno', //error number
msg: 'errmsg', //error message
Output The JSON That Does Not Contain The Error Message
If you don’t want the outputed JSON data contained errno and errmsg , you can output JSON by this.json method. Such as:
JavaScript

export default class extends think.controller.base
indexAction

this.json({name: 'thinkjs"

Common Functions

Get GET Parameters

You can obtain GET parameters through the get method, such as:

JavaScript
export default class extends think.controller.base

indexAction
let name = this.get('name’
let allParams = this.get // obtain all GET parameters

If the parameter does not exist, the value will be an empty string.

Get POST Parameters

You can obtain POST parameters through the post method, such as:

JavaScript
export default class extends think.controller.base

indexAction
let name = this.post('name’
let allParams = this.post // obtain all POST parameters

If the parameter does not exist, then the value will be an empty string.

Get Uploaded Files

You can obtain the uploaded files by using file methods, such as:

JavaScript
export default class extends think.controller.base

indexAction
let file = this.file('image"'
let allFiles = this.file // obtain all uploaded files

The return value is an object that contains the following attributes:
JavaScript

fieldName: 'file', // form field's name

originalFilename: filename, // original file's name

path: filepath, // file's temporary path, the file will be deleted when request end
size: 1000 // file size

If the file does not exist, then the value will be an empty object {} .

JSONP Format Data Output

You can output data in JSONP format by this.jsonp method, the name of the callback request parameter defaults to callback . If you need to modify its name, you can
modifying the configuration callback name .

More Methods

e isGet() Used forcheckis it currently a GET request

e ispost() Used for check is it currently a POST request

e isajax() Used for check is it currently a AJAX request

e ip() Used for getrequesting user’s ip

e redirect(url) Used forjump to an URL

e write(data) Outputdata, automatically call JSON.stringify

e end(data) End the current HTTP request

e json(data) Output JSON data, automatically send content-type Headers that related to JSON

e jsonp(data) Output JSONP data, the request parameter name defaults to the callback

e success(data) Output success JSON data with error info, such as {errno: 0, errmsg: "", data: data}
e fail(errno, errmsg, data) Outputerror JSON data with errorinfo, such as {errno: errno_value, errmsg: string, data: data}
e download(file) Used for download a file

e assign(name, value) Seta variable so that we can use it in the template

e display() Outputa template

e fetch() Rendering the template and get the result

e cookie(name, value) Get or setthe cookie

e session(name, value) Get or setthe session

e header(name, value) Getor setthe header

e action(name, data) Call other Controller’s method, included those in other modules
e model(name, options) Initiated a model instance

A complete list of methods please see API -> Controller,

View
View is template, its default root directory is view/ .
View Files

The default naming rule of view file is module/controller operation.html .

For URL home/article/detail , after parsed, the module is home , the controlleris article ,the operationis detail , then the corresponding view file is
home/article_detail.html

View Configuration

Default view configuration is as follows, you can modify it in the configuration file src/common/config/view.js

JavaScript
export default
type: 'ejs', // template engine
content_type: 'text/html', // the Content-Type send with outputed template
file_ext: '.html', // the extension name
file_depr: '_', // the seperator between controller and action
root_path: think.ROOT_PATH + '/view', // the root directory of view files
prerender: undefined, // whether execution custom process logic before rendering template
adapter // the configuration options needed by template engine
ejs // the extra configuration options when using ejs as template engine
nunjucks // the extra configuration options when using nunjucks as template engine
Note :Since 2.0.6 version, options configuration item was removed, and adapter is the replacement.
The default root directory of view is view/ . If you want each module to own a separate view directory, just reset root_path configuration to empty.
Modifing Seperator
The seperator between the default controller and operationis _ , so the file name is similar to index index.html . If you want the controller to be as a layer directory, such as:
index/index.html , you can modify the seperatorto / .
JavaScript
export default
file_depr: '/’
Modify The Template Engine
If you want to modify some configurations of the template engines, you can modify the corresponding field of configuration. Such as:
JavaScript

export default
options
delimiter: '&' // modify as <& and &>

Template Engine

ThinkJS support ejs , jade , swig and nunjucks astemplate engine, and the default template engine is ejs , you can modify the default template engine based on
need.

ejs

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_controller.html

Delimiter

The default delimiters of ejs are <% and %> . If you want to change them, you can modify the options field of the configuration , such as:

JavaScript
export default

options
delimiter: '&' //BERMERN <& M &

Variable Output

e Escape output <%= data.name%>
* Not escape output <%- data.name%>
e Comment <$# data.name%>

Conditional

<%if(data.name === "'1'){%>
<p>...</p>

<%}else if(data.name === "2"){%>
<p>...</p>

<%Yelse{%>
<p>...</p>

<%}%>

Loop

<%list.forEach(function(item)){%>
<%=item.name%></1i>
<%}%>

Filter

The new version of ejs no longer support the filter function, and if you need some filter functions, you can define some global function in src/common/bootstrap/ , then you
can use these functions directly in the template.

Reference File

ejs does not support template inheritance. But it can make a public template as an independent file, and then introduce it using include directive, such as:

<%include inc/header.html%>

Note : Variable that used by ejs template needs to be assigned in the controller, otherwise it will produce an error.

More ejs document please see here.

nunjucks
Nunjucks is a another template engine ThinkJS supported, it similar to the jinja2, whose functions is unusually powerful, if your project is complex, we suggest you use it.

Delimiter
Block-level delimiters are {¢ and ¢} , variable delimiters are {{ and }} , comment delimiters are <# and #> . Such as:

Markup
{{ username }}

{% block header %}
This is the default content
{% endblock %}

Variable Output

You can use {{username}} to output variables, the default output variables will automatically be escaped, if you don’t want to escape variables, use {{username | safe}}
instead.

Template Inheritance

The parent template:

https://www.npmjs.com/package/ejs

Markup
{% block header %}
This is the default content
{% endblock %}

section class="left
{% block left %}{% endblock %}
section

section class="right
{% block right %}
This is more content
{% endblock %}
section

The child template:

Markup
{% extends "parent.html" %}

{% block left %}
This is the left side!
{% endblock %}

{% block right %}
This is the right side!
{% endblock %}

Conditional

{% if hungry %} Haricup
I am hungry

{% elif tired %}
I am tired

{% else %}
I am good!

{% endif %}

Loop
Markup

h1l>Posts</hl
ul
{% for item in items %}

li>{{ item.title }}</1i
{% else %}

1i>This would display if the 'item' collection were empty</li
{% endfor %}

ul

For complete documentation please see here.

jade

The documentation of jade template can be found here.
swig

The documentation of swig template can be found here.

Add Filters and Other Functions

swig , nunjucks and many other template engines support adding filters, and other functions, it can be done by finding the corresponding adapter in the template configuration
file src/common/config/view.js andadding prerender configuration. Such as:

JavaScript
export default
prerender: function(nunjucks, env
// add a filter, then you can use it in the template
env.addFilter('filter_foo', function

http://mozilla.github.io/nunjucks/
https://github.com/jadejs/jade
http://paularmstrong.github.io/swig/

Note : This function is introduced since ThinkdS 2.0.5 .
Extend The Template Engine
Template engine is implemented by Adapter. If your project needs to use other template engines, it can be extended through Adapter, more details please see here.
Variable Assignment
You can assigning value to template variable by using assign method in the controller.

Assignment of Single Variable

JavaScript
export default class extends think.controlle.base
indexAction
this.assign('title', 'ThinkJS WebSite'
Assignment of Multiple Variables
JavaScript
export default class extends think.controlle.base
indexAction
this.assign
title: 'Think]S WebSite'
author: 'thinkjs’
Get The Values
You can get assigned values by assign after variable assignment. Such as:
JavaScript
export default class extends think.controlle.base
indexAction
this.assign('title', 'Thinkds BM'
let title = this.assign('title’
Template Rendering
You can render the template by call the display method. If no specific template file path was passed, ThinkdS will search on for you automatically. Such as:
JavaScript
export default class extends think.controller.base
indexAction
this.display // render home/index_index.html
You could also specify a specific template file for rendering, more about the display method’s using please see here.
Get Rendered Content
If you don’t want to outputing template, and only want to get the rendered content, you can use the fetch method.
The ES6 Way
JavaScript

export default class extends think.controller.base
* indexAction
let content = yield this.fetch

Dynamically Creation

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/adapter_template.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_controller.html#toc-6b2

JavaScript
module.exports = think.controller

indexAction: function

this.fetch then(function(content

More details about the fetch method please see here.

Internationalization

After starting the internationalization, the view path will has an extra layer of internationalization of directory. Such as specific view path becomes into the
view/zh-cn/home/index_index.html ,and zh-cn means language

More about how to implementing internationalization, please see extensions - > internationalization.

Multiple Themes

After setting the multiple theme, view path will be much more than a layer theme directory. Such as specific view path will becomes into the
view/default/home/index index.html ,the default isthe theme name.

You can set the current theme by http.theme method, setting theme is usually done by middleware.

More information on middleware please see exiensions - middleware.

Default Template Variables

In order to get some common variables easily in the template, ThinkJS will automatically register http , controller , config and other variables in the template, and these
variables can be read directly in the template.

The following code examples are based on ejs , if you are using other template engine, you need to modify it to use the correct syntax.
http
In the template, the properties and methods under http object can be used directly.

controller

In the template, the properties and methods under controller object can be used directly.

JavaScript
export default class extends think.controller.base
indexAction
this.navType = 'home’

Add property navType to the current controller in the Action, then you can use controller.navType intemplate directly.

<%if(controller.navType === 'home')%>
<1i className="action">home</1i>
<%}else{%>
home</1i>
<%}%>

config

You can get the configuration in the template through the config object, such as:

<%if(config.name === ‘text'){%>

<%}%>

Get Localization Using _

In templates, you can obtain the value of the corresponding localization by _ , these values are defined in the src/common/config/locales/[lang].js .

%= _('title')%>

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_controller.html#controllerfetchtemplatefile
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/i18n.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/middleware.html

More information on internationalization please see here.

Configuration

ThinkJS provides a flexible configuration mechanism, it can use different configuration in different modules and project environments, and these configurations will take effective
after service started.

Note: Do not set the private value of an http request in the configuration, because other http setting may overriding these values.

The Project Module

The projects that created default by ThinkJS are divided according to the module, you can define different configuration under each module. General configuration can be defined
under common modules, other modules will inherit the common configuration.

Project Environment

ThinkJS default support three kinds of project environments, it can be configured according to the different environment, in order to meet the needs of the different situations of
configuration.

e development development
e testing testing
e production production

It can also be extended to other environment in project, which kind of environment to use at present can be set in the entrance file, and set the env value.
Defining Configuration Files

config/config.js
For some basic configuration, such as:

JavaScript
export default

port: 8360
host
encoding: 'utf-8'

config/[namel.js
For a specific independent function configuration, such as db.js is the database configuration, redis is redis configuration.

JavaScript
// db.js

export default
type: 'mysql’
adapter
mysql
host: '127.0.0.1', // database host
port: '', // datagbase port
database: '', // database name

user: '', // user name

config/env/[mode].js

Differentiation configuration in different project environment, such as env/development.js , env/testing.js , env/production.js .

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/i18n.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/app_structure.html#toc-f0b

JavaScript
// config/env/development.js

export default
port: 7777
db
type: 'mysql’
adapter
mysql
host: '127.0.0.1'
port
database

user

Note : The differences of different environments generally is not too much, so we defined them in a single file. At this time, if you want to modify an independent function
configuration, you need to add a key corresponding to the independent function. Such as you need to add the the name of the db corresponding to the database when modifing
the database configuration, as shown above.

config/locale/[lang].js

International language pack configuration, such as locale/en.js , locale/zh-cn.js .

Configuration format uses the form of key: value , and the key is case-insensitive.

Loading Configuration Files
ThinkdS supports multiple levels of the configuration file, it reads in the following order:
default configuration of the framework - > framework configuration under project mode - > project common configuration - > common configuration unc

Reading Configuration

Using config

In Controller, Logic, Middleware, you can using this.config . Such as:

JavaScript
let db = this.config('db"' // reading all of the configurations about db
let host = this.config('db.host" // reading the host configuration about the host of db
Using http.config
http objects also have the config method used for obtain the relevant configuration, such as:
JavaScript
let db = http.config('db'
Reading Configuration From Other Places
In other places, we can read the relevant configuration through think.config :
JavaScript

let db = think.config('db" // reading the configuration about db under the common configuration

let dbl = think.config('db', undefined, 'home'’ // get the da configuration under the home module

Note : Before parsing route, we can not get the general module configuration through the config method or http.config method, so the configuration which is used before
route parsing must be defined in the general module.

The Default Configuration

env

Project configuration mode, the config/env/development.js .

JavaScript
export default {

auto_reload: true,
log_request: true,

ge: |
on: false

1

error: {

detail: true

Th config/env/testing.js and config/env/produciton.js have no default configuration.

locale

International language pack configuration, the default configuration is as follows:

JavaScript
// config/locale/en.js

export default {
CONTROLLER_NOT_FOUND: ‘controller “%s’ not found. url is “%s’.',
CONTROLLER_INVALID: 'controller “%s” is not valid. url is “%s’ ',
ACTION_NOT_FOUND: ‘action “%s’ not found. url is “%s’ ',
ACTION_INVALID: 'action “%s” is not valid. url is “%s’ ',
WORKER_DIED: ‘'worker “%d° died, it will auto restart.',
MIDDLEWARE_NOT_FOUND: ‘middleware "%s not found',
ADAPTER_NOT_FOUND: 'adapter “%s” not found',
GCTYPE_MUST_SET: 'instance must have gcType property',
CONFIG_NOT_FUNCTION: ‘'config "%s is not a function',
CONFIG_NOT_VALID: 'config “%s is not valid',
PATH_EMPTY: '“%s’ path muse be set',
PATH_NOT_EXIST: '“%s’ is not exist',
TEMPLATE_NOT_EXIST: ‘'can\'t find template file “%s ',
PARAMS_EMPTY: 'params "%s° value can\'t empty',
PARAMS_NOT_VALID: ‘params " {name} value not valid',
FIELD_KEY_NOT_VALID: 'field “%s° in where condition is not valid',
DATA_EMPTY: 'data can not be empty',
MISS_WHERE_CONDITION: ‘miss where condition',
INVALID_WHERE_CONDITION_KEY: 'where condition key is not valid',
WHERE_CONDITION_INVALID: ‘where condition “%s”:%s’ is not valid',
TABLE_NO_COLUMNS: 'table “%s’ has no columns',
NOT_SUPPORT_TRANSACTION: 'table engine is not support transaction',
DATA_MUST_BE_ARRAY: ‘'data is not an array list',
PARAMS_TYPE_INVALID: ‘params ~{name} type invalid',
DISALLOW_PORT: 'proxy on, cannot visit with port',
SERVICE_UNAVAILABLE: 'Service Unavailable',

validate_required: '{name} can not be blank',

validate_contains: ‘{name} need contains {args}’,

validate_equals: '{name} need match {args}',

validate_different: '{name} nedd not match {args}',

validate_after: '{name} need a date that\'s after the {args} (defaults to now)’,
validate_alpha: '{name} need contains only letters (a-zA-Z)',

validate_alphaDash: ‘'{name} need contains only letters and dashes(a-zA-Z_)',
validate_alphaNumeric: ‘{name} need contains only letters and numeric(a-zA-Z0-9)',
validate_alphaNumericDash: '{name} need contains only letters, numeric and dash(a-zA-Z0-9_)',
validate_ascii: ‘{name} need contains ASCII chars only",

validate_base64: '{name} need a valid base64 encoded',

validate_before: '{name} need a date that\'s before the {args} (defaults to now)',
validate_byteLength: '{name} need length (in bytes) falls in {args}',
validate_creditcard: '{name} need a valid credit card’,

validate_currency: '{name} need a valid currency amount',

validate_date: '{name} need a date',

validate_decimal: '{name} need a decimal number’,

validate_divisibleBy: '{name} need a number that\'s divisible by {args}',
validate_email: ‘{name} need an email',

validate_fqdn: '{name} need a fully qualified domain name',

validate_float: '{name} need a float in {args}',

validate_fullWidth: ‘{name} need contains any full-width chars',
validate_halfWidth: ‘'{name} need contains any half-width chars',
validate_hexColor: '{name} need a hexadecimal color',

validate_hex: '{name} need a hexadecimal number’,

validate_ip: '{name} need an IP (version 4 or 6)',

validate_ip4: '{name} need an IP (version 4)',

validate_ip6: '{name} need an IP (version 6)',

validate_isbn: '{name} need an ISBN (version 10 or 13)',

validate_isin: '{name} need an ISIN (stock/security identifier)’',
validate_iso8601: '{name} need a valid ISO 8601 date',

validate_in: '{name} need in an array of {args}’,

validate_notIn: '{name} need not in an array of {args}',

validate_int: '{name} need an integer',

validate_min: '{name} need an integer greater than {args}',
validate_max: '{name} need an integer less than {args}',
validate_length: '{name} need length falls in {args}',
validate_minLength: '{name} need length is max than {args}',
validate_maxLength: '{name} need length is min than {args}',
validate_lowercase: '{name} need is lowercase',

validate_mobile: '{name} need is a mobile phone number',
validate_mongoId: '{name} need is a valid hex-encoded representation of a MongoDB ObjectId',
validate_multibyte: '{name} need contains one or more multibyte chars',
validate_url: '{name} need an URL',

validate_uppercase: '{name} need uppercase',

validate_variableWidth: '{name} need contains a mixture of full and half-width chars',
validate_order: '{name} need a valid sql order string',

validate_field: '{name} need a valid sql field string’,

validate_image: '{name} need a valid image file',

validate_startWith: '{name} need start with {args}’',

validate_endWidth: '{name} need end with {args}’,

validate_string: '{name} need a string',

validate_array: '{name} need an array',

validate_boolean: '{name} need a boolean',

validate_object: '{name} need an object'

config

The basic configuration, config/config.js .

JavaScript
export default {
port: 8360, // the port server is listening
host: "', // host
encoding: ‘utf-8', // encoding

pathname_prefix: '', // the prefix that will be remove when parsing routers
pathname_suffix: '.html', // the suffix that will be remove when parsing routers

hook_on: true, // turns hook on

cluster_on: false, //turns cluster on

timeout: 120, //120 seconds
auto_reload: false, //auto reload the changed files

resource_on: true, // turns resource on
resource_reg: /~(static\/|[~\/]+\.(?!js|html)\w+$)/, //

route_on: true, //turns routing on

log pid: false, //log process id
log_request: false, //log http request

create_server: undefined, //create server

output_content: undefined, //output content function

deny_module_list: [], //deny module list

default_module: 'home', //default module

default_controller: 'index', //default controller

default_action: 'index', //default action

callback_name: 'callback', //callback name for JSONP request
json_content_type: 'application/json', //content-type for output json data

cache

Cache configuration, config/cache.js

export default {
type: 'file', //cache type
timeout: 6 * 3600,
adapter: {
file: {

path: think.RUNTIME_PATH + '/cache', // the folder to store the caching content in file caching type

path_depth: 2, // the levels of subfolders

file_ext: '.json' // the suffix of the caching files
1
redis: {

prefix: 'thinkjs_', //cache key prefix

s

cookie

Cookie configuration, config/cookie.js .

export default {
domain: "'

path: '/', // cookie path

httponly: false, //httponly

secure: false, //secure

, // cookie domain

timeout: @ //cookie time

s

db

Database configuration, config/db.js .

export default {
type: 'mysql’', //database type
log_sql: true, //log sql
log_connect: true, // log database connection

adapter: {
mysql: {
host: '127.0.0.1', //database host
port: '', //database port
database: '', //database name
user: '', //database account
password: '', //database account password

prefix: 'think_', //table prefix
encoding: 'utf8', //table encoding
nums_per_page: 10, //nums per page

s

error

The error information configuration, config/error.js .

export default {
key: ‘errno', //error number
msg: 'errmsg', //error message
value: 1000 //default errno

¥

gc

The cache, the session, and garbage disposal configuration, config/gc.js .

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript
export default {

on: true, //turn on gc
interval: 3600, // gc interval
filter: function(){ //
let hour = (new Date()).getHours();
if(hour === 4){

return true;

s

hook

Hook configuration, config/hook.js .

JavaScript
export default {
request_begin: [],
payload_parse: ['parse_form_payload', 'parse_single_file_payload', 'parse_json_payload', 'parse_querystring_payload'],
payload_validate: ['validate_payload'],
resource: [‘'check_resource', ‘output_resource'],
route_parse: ['rewrite_pathname', 'parse_route'],
logic_before: [],
logic_after: [],
controller_before: [],
controller_after: [],
view_before: [],
view_template: ['locate_template'],
view_parse: ['parse_template'],
view_filter: [],
view_after: [],
response_end: []
¥
post
The post request configuration, config/post.js .
JavaScript
export default {
json_content_type: [‘'application/json'],
max_file_size: 1024 * 1024 * 1024, //1G
max_fields: 100,
max_fields_size: 2 * 1024 * 1024, //2M,
ajax_filename_header: 'x-filename',
file_upload_path: think.RUNTIME_PATH + '/upload’,
file_auto_remove: true
¥
redis
redis configuration, config/redis.js .
JavaScript

export default {
host: '127.0.0.1",
port: 6379,
password: '

timeout: 0,

log_connect: true

s

memcache

memcache configuration, config/memcache.js .

JavaScript
export default {

host: '127.0.0.1', //memcache host
port: 11211,

username: ‘‘, //

password: "',

timeout: @, //cache timeout

log_connect: true

session

Session configuration, config/session.js .

JavaScript
export default {
name: 'thinkjs"',
type: 'file', // caching type
path: think.RUNTIME_PATH + '/session',
secret: "'
auth_key: 'think_auth_list',
timeout: 24 * 3600,
cookie: { // cookie options
length: 32
}
.
15
view
View configuration, config/view.js .
JavaScript
export default {
type: ‘'ejs’,
content_type: ‘text/html’,
file_ext: '.html®,
file_depr: ' ',
root_path:
adapter: {
ejs: {
}
}
e
I
websocket
Websocket configuration, config/websocket.js
JavaScript

export default {
on: false, //use websocket
type: 'socket.io', //websocket type
allow_origin: "'
sub_protocal: "',
adapter: undefined,
path: "', //url path for websocket
messages: {

// open: 'home/websocket/open’,

The Extension Configuration

Projects configuration can be extended according to the need, extending configuration only need to set up the correspondding files in src/common/config/ , such as:

JavaScript
// src/common/config/foo.]js

export default {

name: 'bar’

So you can obtain the corresponding configuration through think.config('foo")

Route

When an user visit an URL, eventually which module, controller and operation will be performed is decided by the parsed route.

ThinkJS provides a flexible route mechanism, in addition to the default resolution, it also support a variety forms of custom route, let the URLs more simple and friendly.

Resolving URL to pathname
When a user accesses to the service, the server first of all, will get a full URL, such as http://www.thinkjs.org/zh-cn/doc/2.0/route.html .

The pathname resolved by URLis /zh-cn/doc/2.0/route.html .

pathname Filter

Sometimes for the sake of SEO or other reasons, the URL will be added a few more things. Say the current page is a dynamic page, but the URL ended with suffix .html is more
friendly to search engines. But the suffix is useless in the subsequent route resolution, it needs to be removed.

ThinkJS offer the following configuration, it can remove the prefix and postfix content of pathname :

JavaScript
export default
pathname_prefix
pathname_suffix: '.html®

Above configuration can be modified in the src/common/config/config.js .

When filtering, the / before and after pathname will be removed, and this logic is not affected by the configuration above. After filtering the pathname, the clean pathname you

getis zh-cn/doc/2.0/route .

Note :Ifthe URLis http://www.thinkjs.org/ ,then the clean pathname you get is an empty string.

Subdomain Deployment

For complex projects, we may want to deploy different function under the different domain, but the code is still in a single project. For example thought the domain name
admin.exanple.com was deployed to host the administraion functions, we still hope that it can be mapped to the admin module.

ThinkJS provides the following configuration that it can undertake subdomain deployment, the configuration can be setinthe config/config.js :

JavaScript
export default
subdomain
admin: ‘'admin', // means map admin.example.com to the admin module

If the filtered pathname is group/detail ,and the ULR hit the subdomain admin.example.com, the pathname will become to admin/group/detail internally.
Routing ldentification

Routing Resolving

By default, routing identification identify the filtered pathname according to the
module/controller/action/parameterl/value-of-parameterl/parameter2/value-of-parameter2 . For example ,if the pathname is admin/group/detail , the
results of identification is:

e moduleis admin
e controlleris group
e actionis detail ,the corresponding method is detailAction

If the project does’t have admin or the module is disabled, then the results of identification is:

e module is the default module home

e controlleris admin

e actionis group , the corresponding methodis groupAction
e parameteris {detail: ''}

Case Transformation

After route identification, module , controller andthe action value will automatically convert to lowercase. If there are in the Action value, it will do some

transformation, for example the value of Controlleris index after identification, the Action value is user add , then the corresponding Action method called useraddaction ,

but the template name is still index user add.html .

The Default Route

Once there is no corresponding value when parsing the pathname, the default values are used. The module’s default value is home , the controller’s default value is index , and
the action’s default value is index .

These values can be modified through the following configuration, in the configuration file src/common/config/config.js :

JavaScript
export default
default_module: "home'’
default_controller: ‘index'
default_action: "index’
Custom Route
Although the default route looks clear, it’s also simple to parse, but looks not enough concise.
Sometimes we need more compact routes scheme, in this case we need to use a custom route. Such as the detail page of an article, the default route might be
article/detail/id/10 , butthe URL we wanted is article/10 .
Enable The Custom Configuration
To enable the custom route, open src/common/config/config.js ,and set route on as true .
JavaScript
export default
route_on: true
Route Rules
After enabling the custom route, the next thing is to define the route rules in the route configuration file src/common/config/route.js , the format are as following:
JavaScript
export default
"rulel", "the-pathname-you-wanted-to-be-identified-to"
"rule2"
get: "the-pathname-you-wanted-to-be-identified-to-when-GET"
post: "the-pathname-you-wanted-to-be-identified-to-when-POST"
Note : Each rule is an array.(The reason why we do not use object literal is regular expressions cannot be used as object’s key.)
Identify Order
The match rule of custom route is : matching one by one from the front to end, if hit one rule, it will not match forward.
ThinkdJS supports three types of custom route: regular route, rules route and static route.
Regular Route
Regular route useing regular expressions to define routes, relying on the powerful regular expression, it can define very flexible route rules.
JavaScript

export default
"home/article/detail?id=:1"

The above regular expression will match pathname like article/10 ,the resolved pathname will be home/article/detail , and the value of parameter id then can obtain
through this.get method in the controller.

JavaScript
export default class extends think.controller.base

detailAction
let id = this.get('id’

If regular route contains multiple child catch groups, then can obtain the corresponding values by :1 , :2 , :3 :

JavaScript
export default

get: "home/article/detail?id=:1"
delete: "home/article/delete?id=:1"

post: "home/article/saver?id=:1"

Rules Route

Rules route is a way of string matching, but supports some dynamic values. Such as:

JavaScript
export default

‘group/:year/:month', "home/group/list"

If URLis http://www.example.com/group/2015/10 ,then it will hit the rule, the pathname we get willbe home/group/list , at the same time, it will add two parameters
year and month , and they can be gotten through this.get method in the controller.

JavaScript
export default class extends think.controller.base
listAction
let year = this.get('year
let month = this.get('month
Static Route
Static route is a way of pure string exactly match, its writing and identification are very simple, of course the function is relatively weaker.
JavaScript

export default
"list", "home/article/list"

If the URLis http://www.example.com/list ,then the pathname is replaced with home/article/list .

Optimizing The Route Performance

Above has said that the custom route is an array, each item of the array is a specific route rule,
and it matches one by one from the front to end when matching. If the route table is large, there may be a performance issue.

In order to avoid performance issues, ThinkJS provides a more efficient way to custom route, configuring route according to the module. This way, the route configuration format is
slightly different from the above.

common/config/route.js
This time, the route configuration in general module no longer define specific route rules, but configures which rules hit which module. Such as:
JavaScript
export default

admin

reg // hit admin module

home // home module as default

admin/config/route.js

The admin module configures specific route rules belongs it.

JavaScript
export default

‘admin/index’

‘admin/:1?id=:28&resource=:1

Assuming the URLis http://www.example.com/admin/api , then the parsed pathname is admin/api , it will hitthe admin module when matching the rules in the

common , and then match the route rules one by one under the admin module. This way, it can greatly reduce the number of route rules need to match every time, makes route
more efficient.

Custom Home Page Router

By default, home page router execute the indexAction of index controller. If you want custom home router in your projects, you will find it doesn’t work by writing

['', 'index/list'] .

In consideration of performance, ThinkJS don’t support customizing of home router. Because of the traffic of Home page are usually large, and there are less chances to modify the
configuration of its router. If we support the customizing of Home page router, we would run through all the customized routers for every request to home page,that will be a huge
wasting on performance.

Model

Model Introduction

During project development, you always need to manipulate data tables, thus involes CRUD operations. The model is just an incapsolation in order to facilite database
manipulation. A model maps to a data table in database.

ThinkdS currently supports MySQL, MongoDB and SQLite.

Create Model

You can use command thinkjs model [name] in project directory to create model:

Bash
thinkjs model user
This will create file src/common/model/user.js .
Model file will be placed in common module by default, if you want to use other modules, you need to specify module name when creating:
Bash
thinkjs model home/user
Note: Model file is not required, you don’t need to create it when there is no custom method, in this case the instance of base class will be used.
Model Properties
model.pk
Default primary key is id ,and _id in MongoDB.
model.schema
The table fields definition, will be readed from database by default, and the result like this:
JavaScript
id
name: 'id’

type: 'int', //type

required: true, //is it required
primary: true, //is it primary
unique: true, //is it unique

auto_increment: true //is it autoincrement?

Additional properties can be added in the model, such as default value and does it read only:

JavaScript
export default class extends think.model.base {

/**
* Table fields definition
* @type {Object}
*/
schema = {
view_nums: { //read count
default: @ //default is ©

s
fullname: { //fullname
default: function() { //combination of first_name and last_name, can not use arrows function
return this.first_name + this.last_name;
"\
create_time: { //create time
default: () => { //get current time
return moment().format('YYYY-MM-DD HH:mm:ss')
1,
readonly: true //read only, you can't change it after added

default is only valid in adding, and readonly is only valid in updating.

You can see API -> Model to get more details.

Model Instantiation

Model instantiation is different depend on use cases. If current class has model method, it will be used directly to instantiate:

JavaScript
export default class extends think.controller.base {
indexAction(){
let model = this.model("user");
}
}
You can also use think.model to instantiate:
JavaScript
let getModelInstance = function(){
let model = think.model("user", think.config("db"), "home");
v
J
You need to pass in configuration when using think.model .
Chaining Invoke
Model provides many chaining invoke methods(like jQuery does) which can facilite data manipulation. Chaining invoke is implemented by returnning this :
JavaScript
export default class extends think.model.base {
/**
* get list data
*/

* getList(){
let data = yield this.field("title, content").where({
id: [">", 100]
}).order("id DESC").select();

Model supports chaining invoke the following methods:

e where , define query or update conditions

e table , define table name

e alias , define alias of current table

e data , assign value before creating or updating data
e field , define field for querying, support exclude

e order , sortresults

e limit , limit results number

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_model.html

e page , results pagination, will be translated to limit when generate sql commands
e group , querying group support

e having , querying having support

e join , querying join support

e union , querying union support

e distinct , querying distinct support

e cache , query cache

This doc stays at https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_intro.md.

Config Database

Config Database

Here is the model configuration, you can modify it in src/common/config/db.js :

seeqg

export default {
type: 'mysql’,
log_sql: true,
log_connect: true,

adapter: {
mysql: {
host: '127.0.0.1",
port: "',
database: '', //database name
user: '', //database account
password: '', //database account password

prefix: ‘think_',
encoding: 'utf8'

1

mongo: {

1
You can use different configuration in different module, just config src/[module]/config/db.js.

Define Data Table

By default, model name maps to table name. If your table’s prefix is think , user model will map to table think user and user group model will map to table

think user group .
You can modify these by config the following two properties:

e tablePrefix table prefix
e tableName table name without prefix

ES6 Way

export default class extends think.model.base {
init(...args){
super.init(...args);
this.tablePrefix = ""; //set the prefix to blank
this.tableName = "user2"; //set the data table name to user2

Dynamic Class Creation

module.exports = think.model({
tablePrefix: "", //use property to set prefix and table name
tableName: "user2",
init: function(){
this.super("init", arguments);

1)

https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_intro.md

Modify Primary Key

Model fault primary key is id , if it is not the primary key seting in data table, you need to reset it:

export default class extends think.model.base {
init(...args){
super.init(...args);
this.pk = "user_id"; // set primary key as user_id

}

Operations like count , sum , min and max all will use primary key, when you need these operations, please reset the primary key.

Distributed Database

In large-scale systems, there are often multiple databases to seperate the reading and writing operations. ThinkJS supports custom parsing through parser, you can modify it in

src/common/config/db.js

// reading configuration
const MYSQL_READ = {
host: "10.0.10.1",

// writing configuration
const MYSQL_WRITE = {
host: "10.0.10.2"

export default {
host: "127.0.0.1",
adapter: {
mysql: {
parser: function(options){ // parsing method for mysql
let sql = options.sql; // the SQL need to execute
if(sql.indexOf("SELECT") === @){ // SELECT query
return MYSQL_READ;
}
return MYSQL_WRITE;

The options of parser containsthe SQL sentences that need to execute next, thus parser can return corresponding database configuration conveniently.

This doc stays at: https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_config.md.

CRUD Operations

Create Data

add

Use add method to add a new record, return value is the id of inserted record:

export default class extends think.controller.base
* addAction
let model = this.model("user"

let insertId = yield model.add({name: "xxx", pwd: "yyy"

addMany

Use addMany create many records:

JavaScript

https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_config.md

export default class extends think.controller.base
* addAction
let model = this.model("user"
let insertId = yield model.addMany
name: "xxx", pwd: "yyy"
name: "xxx1", pwd: "yyyl"

thenAdd

JavaScript

We often need to prevent a field from duplication when designing database. So it's common to query whether data exists before inserting and just insert if it doesn't exist.

Model provides thenadd to support this manipulation:

export default class extends think.controller.base
* addAction

let model = this.model("user"

//first param is the data need to add, second param is the condition, if there is no result when query use second param, the data will be added

let result = yield model.thenAdd({name: "xxx", pwd: "yyy" name: "xxx"
// result returns {id: 1000, type: "add"} or {id: 1000, type: "exist"}

Update Data

update

Use update method to update data, return value is the influenced records:

export default class extends think.controlle.base

* updateAction
let model = this.model("user"
let affectedRows = yield model.where({name: "thinkjs" update({email: "admin@thinkjs.org"
increment

Use increment method to increase one field’s value:

export default class extends think.model.base {
updateViewNums (id){
return this.where({id: id}).increment("view_nums", 1); // increase one to reading number

decrement

Use decrement method to decrease one field’s value:

export default class extends think.model.base {
updateViewNums (id){
return this.where({id: id}).decrement("coins", 10); // decrease ten coins

Query Data

Model provides many ways to query data, you can: query one line data, query multiple lines data, read the field value, read max value, read results count and so on.

Query One Line Data

Use find to query one line data, return value is the object:

JavaScript

JavaScript

JavaScript
export default class extends think.controller.base

* listAction
let model = this.model("user"
let data = yield model.where({name: "thinkjs"}).find

//data returns {name: "thinkjs", email: "admin@thinkjs.org", ...}

If there doesn’t exist the data you need, return value is blank object {} . Youcanuse think.isEmpty to check whether itis blank.

Query Multiple Lines Data

Use select query many lines data, return value is results:

JavaScript
export default class extends think.controller.base

* listAction
let model = this.model("user"
let data = yield model.limit(2).select

//data returns [{name: "thinkjs", email: "admin@thinkjs.org"}, ...]

If there doesn’t exist the data you need, return value is blank array [] . You canuse think.isEmpty to check whether it is blank.

Result Pagination

It’s common to show paginated data in page. You need to query the total counts first, then calculate the number of pagination. Model provides countselect method to facilite
this operation, it can query total counts automatically.

JavaScript
export default class extends think.controller.base
* listAction
let model = this.model("user"
let data = yield model.page(this.get("page" 10) .countSelect
Return value’s format:
JavaScript

numsPerPage: 10, //number per page

currentPage: 1, //current page

count: 100, //total counts

totalPages: 10, //total page number

data //data of current page
name: "thinkjs"

email: "admin@thinkjs.org"

If current page number exceeds page range, you can fix it through parameters. true means fix to first page, false means fix to last page: countselect(true) ,

countSelect (false)

If total count cannot be queried, you can pass it as a parameter like countselect(1000) , means total countis 1000.

count

Use count method to query total number of records that match the conditions:

export default class extends think.model.base {
getMin(){
// the total number where status = ‘publish’
return this.where({status: "publish"}).count();

sum

Use sum method to compute the sum of values of the same fields that match the conditions:

export default class extends think.model.base {

getMin(){
// the sum of values of view_nums where status = 'publish’
return this.where({status: "publish"}).sum("view_nums");
}
}
max

Use max to find the largest value of the selected column:

export default class extends think.model.base {

getMin(){
// find the largest value of comments where status = 'publish’

return this.where({status: "publish"}).max("comments");

min
Use min to find the smallest value of the selected column:

export default class extends think.model.base {

getMin(){
// find the smallest value of comments where status = 'publish'

return this.where({status: "publish"}).min("comments");

Query Cache

Considering performance, querying data from cache is common. Doing it manually is difficult, so model provides cache method to set query cache:

JavaScript

export default class extends think.model.base
getList

//set cache key and expire time
return this.cache("get_list", 3600).where({id ">": 100 select

These codes will cache query results. If cache matchs, results will be returned directly from cache. Otherwise, database will be used. The key of cache is get_1list , will expire

after one hour.

Key is optional, model will generate a cache key from sgl command:

JavaScript
export default class extends think.model.base
getlList
//only set cache time
return this.cache(3600).where({id ">": 100 select
Cache Configuration
Config cache in model configuration’s cache field:
JavaScript

export default
cache
on: true
type
timeout: 3600

e on controls the whole database cache configurations, cache will be disabled if it is off
e type type of cache, default is memory, supported types can be found at Adapter -> Cache

e timeout default expire time

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/TODO

Delete Data

Use delete method to remove data, return the count of influenced row:

export default class extends think.controller.base
* deleteAction
let model = this.model("user"
let affectedRows = yield model.where({id ">", 100 delete

More operations in model can be found at AP| -> model.

This doc stays at https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_intro.md.

Transaction

Model supports transaction operation provided the database you are using supports transaction too.
InnoDB and BDB engine of Mysqgl support transaction, if you need to use transaction in Mysql, must set the engine to InnoDB or BDB.

SQLite supports transaction.

Use Transaction

Model provides startTrans , commit and rollback to operate transaction.

e startTrans start atransaction
e commit is used for commit transaction after your operations
e rollback is used for roll back if operation has exception

ES6 Way

export default class extends think.controller.base
* indexAction

let model = this.model("user"

try
yield model.startTrans
let userIld = yield model.add({name: "xxx"
let insertId = yield this.model("user_group").add({user_id: userId, group_id: 1000
yield model.commit

catch(e
yield model.rollback

Dynamic Class Creation Way

module.exports = think.controller
indexAction: function(self

var model = this.model("user"

return model.startTrans then(function
return model.add({name: "xxx"
then(function(userId
return self.model("user_group").add({user_id: userId, group_id: 1000
then(function
return self.commit
catch(function(err
return self.rollback

Transaction method

startTrans , commit and rollback need to be used when you use transaction. In order to simple this operation, model provides transaction method.

ES6 Way

JavaScript

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/TODO
https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_intro.md

export default class extends think.controller.base
* indexAction(self

let model = this.model("user"

let insertId = yield model.transaction(function *

let userIld = yield model.add({name: "xxx"

return yield self.model("user_group").add({user_id: userId, group_id

Note: Arrow function cannot used with */yield , so we use function * . If you want to use arrow function, you can use async, like async () => {} .

Dynamic Class Creation Way

module.exports = think.controller
indexAction: function(self
var model = this.model("user"
return model.transaction(function

return model.add({name: "xxx then(function(userId

return self.model("user_group").add({user_id: userId, group_id
then(function(insertId

catch(function(err

Transaction accepts a callback function which contains real operation logic and need to return.

This doc stays at https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_transaction.md.

1000

1000

Relational Model

JavaScript

JavaScript

Tables in database often related to other tables and need to be operated with related tables together. For example, an article can have category, tag, comment and author, and

these information often store in other related tables.

ThinkJS supports relational model which can simplify these operations.

Supported Type
ThinkJS supports four relationships:

e think.model.HAS ONE one to one model

e think.model.BELONG TO one to one belong to
e think.model.HAS MANY one to many

e think.model.MANY TO MANY many to many

Create Relational Model

Use thinkjs model [name] --relation to create relational model:
thinkjs model home/post --relation

This will create model file src/home/model/post.js .

Set Relationship

Use relation property to set relationship:

JavaScript

https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_transaction.md

JavaScript
export default class extends think.model.relation

init args
super.init args
//use relation property to set relationship, can set many relationships
this.relation =
cate
comment

You can also use ES7 syntax to define relation property:

JavaScript
export default class extends think.model.relation
//define relation property directly
relation =
cate
comment
init args
super.init args
Data Format of Single Relational Model
JavaScript
export default class extends think.model.relation
init args
super.init args

this.relation =

cate
type: think.model.MANY_TO_MANY, //relation type
model: "", //model name

name: “"profile", //data name
key: "id"

fKey: "user_id", //forign key
field: "id,name"

where: "name=xx"

order

limit

rModel

rfKey

Each field’s means:

e type type of relation

e model model name of relation table, defaultis key , hereis cate
e name data field name, default is key, here is cate

e key related key of current model

e fKey related key of related table

e field field used to query related table, fKey must be included if you set this field
e where where condition used to query related table

e order orderused to query related table

e 1limit limitused to query related table

e page page used to query related table

e rModel related model name in many to many type

e rfKey key inrelated table in many to many type

If you just want to set related type without other fields, you can use this simple way:

export default class extends think.model.relation
init args
super.init args
this.relation =
cate: think.model.MANY_TO_MANY

HAS_ONE

One to one relation, means current table has one additional table.

JavaScript

Suppose curret model name is user and related table model name is info , then the default value of key field in configurationis id , and the default value of fkey is

user_id

export default class extends think.model.relation
init args
super.init args
this.relation =
info: think.model.HAS_ONE

Execute quering operation will get below data:

id: 1

name: "111"

info // data from related table
user_id: 1

desc: "info"

BELONG_TO

One to one relation, and one belong to another one, as opposed to HAS_ONE.

JavaScript

JavaScript

Suppose curret model name is info and related table model name is user , then the default value of key field in configurationis user id , and the default value of fxkey

is id .

export default class extends think.model.relation
init args
super.init args
this.relation =
user: think.model.BELONG_TO

Execute quering operation will get below data:

id: 1
user_id: 1
desc: "info"
user

name: "thinkjs"

HAS_MANY

One to many relation.

JavaScript

JavaScript

Suppose current model name is post , related table model name is comment , then the default value of key field in configurationis id and the default value of fkey is
post_id

JavaScript

"use strict"
/*x

* relation model

*/
export default class extends think.model.relation

init args

super.init args

this.relation =
comment
type: think.model.HAS_MANY

Execute quering operation will get below data:

JavaScript

id: 1
title: "first post"
content: "content"
comment

id: 1

post_id: 1

name: "welefen"

content: "first comment"

If data in related table needs pagination, use page parameter:

JavaScript

"use strict"
/*x

* relation model

*/
export default class extends think.model.relation

init args

super.init args

this.relation =

comment
type: think.model.HAS_MANY

getList(page
return this.setRelation("comment" page: page}).select

Besides using setRelation , you can also pass in a function, this function will be executed during paramater mergin.

MANYTOMANY

Many to many relation.

Suppose current model name is post , related table model name is cate , then we need a relationship table. The default value of rModel and rfkey fields in configuration

are post_cate and cate_id

"use strict"
/*x
* relation model
*/
export default class extends think.model.relation
init args
super.init args

this.relation =
cate
type: think.model.MANY_TO_MANY
rModel: "post_cate"
rfKey: "cate_id"

Quering results will be:

id: 1
title: "first post"
cate

id: 1

name: "catel"

post_id: 1

Dead Cycle

Suppose we have two tables, one set the other as HASONE and the other set this as BELONGTO, this will cause cycle quering during quering and result to dead cycle.

You can set relation field in config to close related quering and prevent dead cycle:

export default class extends think.model.relation
init args
super.init args
this.relation =
user
type: think.model.BELONG_TO

relation: false //close related quering when query user

You can also only close current model’s relationship:

export default class extends think.model.relation
init args
super.init args
this.relation =
user
type: think.model.BELONG_TO

relation: "info" //close info model's relationship whey query user

Close Relationship Temporarily

JavaScript

JavaScript

JavaScript

JavaScript

After set relationship, operations like query will query related table automatically. If you don’t want to query related table, just use setkRelation method to close relationship

temporarily.

Close All

Use setRelation(false) to close all relationship query.

JavaScript

export default class extends think.model.relation {
init(...args){
super.init(...args);
this.relation = {
comment: think.model.HAS_MANY,
cate: think.model.MANY_TO_MANY
s
s

getList(){
return this.setRelation(false).select();

¥
Open Part
Use setRelation('comment') to query datafrom comment , other table won’t be queied.
JavaScript
export default class extends think.model.relation {
init(...args){
super.init(...args);
this.relation = {
comment: think.model.HAS_MANY,
cate: think.model.MANY_TO_MANY
¥
b
getList2(){
return this.setRelation("comment").select();
¥
}
Close Part
Use setRelation('comment', false) toclose comment quering.
JavaScript
export default class extends think.model.relation {
init(...args){
super.init(...args);
this.relation = {
comment: think.model.HAS_MANY,
cate: think.model.MANY_TO_MANY
}s
1
getList2(){
return this.setRelation("comment", false).select();
}
¥
Reopen All
Use setRelation(true) toreopen all related quering.
JavaScript

export default class extends think.model.relation {
init(...args){
super.init(...args);
this.relation = {
comment: think.model.HAS_MANY,
cate: think.model.MANY_TO_MANY
¥
s

getList2(){
return this.setRelation(true).select();

—

mongo Relational Model

This relational model doesn’t work for mongo model, mongo relational model stays here htips://docs.mongodb.org/manual/tutorial/model-embedded-one-to-one-relationships-

between-documents/.

This doc stays at https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_relation.md.

https://docs.mongodb.org/manual/tutorial/model-embedded-one-to-one-relationships-between-documents/
https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_relation.md

Mysql

ThinkJS supports Mysql well, the underlying library is https://www.npmjs.com/package/mysq|l.

Connections Pool

Mysql default has only one connection, if you want to use multiple connections, you can use connections pool. Modify src/common/config/db.js , such as:

JavaScript
export default
connectionLimit: 10 //create 10 connections
socketPath
Default host and port will used to connect Mysq|, if you want to use unix domain socket, see the below configuration:
JavaScript
export default
socketPath: "/tmp/mysql.socket"
SSL options
Use below configuration to set SSL connection:
JavaScript
export default
ssl
ca: fs.readFileSync(__dirname + "/mysql-ca.crt"
Database Support Emoji
The encoding of database usually is ut£8 , but it doesn’t support emoiji. If you want database to support emoji, set database encoding to ut£8mb4 .
Besides, you have to modify encoding in src/common/config/db.js to utf8mb4
JavaScript
export default
encoding: "utf8mb4"
Error: Handshake inactivity timeout
In some Node.js version(like 4.2.0), connect Mysq|l will throw this error:
JavaScript

Error: Handshake inactivity timeout
at Handshake.sequence.on.on.on.on.on.self._connection._startTLS.err.code (/home/***/node_modules/mysql/lib/protocol/Protocol.js:154:17
at Handshake.emit (events.js:92:17
at Handshake._onTimeout (/home/***/node_modules/mysql/lib/protocol/sequences/Sequence.js:116:8
at Timer.listOnTimeout [as ontimeout]| (timers.js:112:15

at Protocol._enqueue (/home/***/node_modules/mysql/1lib/protocol/Protocol.js:135:48

at Protocol.handshake (/home/***/node_modules/mysql/lib/protocol/Protocol.js:52:41

at PoolConnection.connect (/home/***/node_modules/mysql/1lib/Connection.js:119:18

at Pool.getConnection (/home/***/node_modules/mysql/1lib/Pool.js:45:23

at Object.exports.register (/home/***/node_modules/hapi-plugin-mysql/lib/index.js:40:27

at /home/***/node_modules/hapi/lib/plugin.js:242:14

at iterate (/home/***/node_modules/hapi/node_modules/items/lib/index.js:35:13

at done (/home/***/node_modules/hapi/node_modules/items/lib/index.js:27:25

at Object.exports.register (/home/***/node_modules/lout/lib/index.js:95:5

at /home/***/node_modules/hapi/lib/plugin.js:242:14

To solve this, just update Node.js to the latest version.

This doc stays at https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_mysgl.md.

MongoDB

https://www.npmjs.com/package/mysql
https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_mysql.md

ThinkJS supports MongoDB database, underlying module is mongodb.

Config

Change type in model configurationto mongo to use MongoDB database:

JavaScript
export default

type: "mongo"

Config options

In order to add additional params when connecting MongoDB service, add them to options :

JavaScript
export default

type: "mongo"
adapter
mongo
options
authSource: 'admin'

replicaSet: 'xxx'

Based on this config, the connection URL will become to mongodb://127.0.0.1:27017/2?authSource=admin .

For more additional options, please read http://mongodb.github.io/node-mongodb-native/2.0/reference/connecting/connection-settings/.

Create Model

Use command thinkjs model [name] --mongo to create model:

JavaScript
thinkjs model user --mongo

After executing, src/common/model/user.js Will be created. If you want to place it within other module, add the specific module name:

JavaScript
thinkjs model home/user --mongo

This will create model file within home module, file name is src/home/model/user.js .
Model Inheritence
Model has to inherit think.model.mongo class. If current class doesn't inherit it, you have to modify it:

ES6 Way

JavaScript
export default class extends think.model.mongo

Dynamically Creating

JavaScript
module.exports = think.model("mongo"

CURD Operations

CURD operations are same as Mysq|, just read Model -> Introduction.

Create Index

mongo model can config index, model will create index automatically before CURD operations. Configurations are placed in indexes property:

https://www.npmjs.com/package/mongodb
http://mongodb.github.io/node-mongodb-native/2.0/reference/connecting/connection-settings/
https://thinkjs.org/zh-cn/doc/2.0/model_intro.html#toc-d84

export default class extends think.model.mongo
init args
super.init args
//config index
this.indexes =

Single Index

export default class extends think.model.mongo
init args
super.init args
//config index
this.indexes =
name: 1

Unique Index

Use s$unique to set unique index:

export default class extends think.model.mongo
init args
super.init args
//config index
this.indexes =
name: {$unique: 1

Multiple Fields Index

You can combine multiple fields to create index:

export default class extends think.model.mongo
init args
super.init args
//config index
this.indexes =
email: 1
test
name: 1
title: 1
$unique: 1

Get Index

Use getIndexes to get created indexes:

export default class extends think.controller.base

async indexAction
let model = this.model("user"
let indexes = await model.getIndexes

aggregate

Use aggregate method to do aggregation:

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript
export default class extends think.model.mongo {

match(){
return this.aggregate([
{$match: {status: "A"}}
{$group: {_id: "$cust_id", total: {$sum: "$amount"}}}
1);

Details stay at https://docs.mongodb.org/manual/core/aggregation-introduction/.

MapReduce

Use mapReduce method to do MapReduce operations:

JavaScript
export default class extends think.model.mongo {

execMapReduce(){

let map = () => {
emit(this.cust_id, this.amount);

}

let reduce = (key, values) => {
return Array.sum(values);

}

return this.mapReduce(map, reduce, {
query: {status: "A"},
out: "order_totals"

1)

Details stay at https://docs.mongodb.org/manual/core/aggregation-introduction/#map-reduce.

This doc stays at https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_mongodb.md.

SAQLite

ThinkJS supports SQLite database, underlying uses sqlite3 module.

Config

Change type propertyto sglite touse SQLite. Modify src/common/config/db.js :

JavaScript
export default {

type: "sqlite"

Store Type

SQLite supports two ways to store data: memory and file, config path to true touse memory store:

Memory

JavaScript
export default {

type: "sqlite",
adapter: {
sqlite: {
path: true, // use memory to store data

File

Use file need to set the path of SQLite data, defaultis src/common/runtime/sqglite .

https://docs.mongodb.org/manual/core/aggregation-introduction/
https://docs.mongodb.org/manual/core/aggregation-introduction/#map-reduce
https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_mongodb.md
https://www.npmjs.com/package/sqlite3

export default
type: "sqlite"
adapter
sqlite
path: "/path/to/store/sqlite" //use file to store data

The path of data file is path + /[name].sqglite , default database demo ’sfile pathis src/common/runtime/sglite/demo

CURD Operations

CURD operations are same as MySq|, just read Model -> Introduction.

This doc stays at https:/github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_sglite.md.

PostgreSQL

ThinkJS supports PostgresoL by using pg module in underlayer.

Configuration

If you want to use PostgreSQL, you should change modle type to postgre by modify src/common/config/db.js :

export default
type: 'postgre’
adapter
postgre

CURD handler

PostgreSQL has same APIs with MySQL, you can know more in Model -> Description,

Adapter

Adapter

JavaScript

JavaScript

Adapters are sorts of implementations which implements a same kind of function. In ThinkdS , the framework provides these adapters by default. Such as Cache, Session,

WebSocket, Db, Store, Template, Socket and so on.

Create An Adapter

You can create an adapter with console conmmand like this:

thinkjs adapter template/dot

It creates a Template Adapter named dot in src/common/adapter/template/dot.js . The code probably likes the following:

export default class extends think.adapter.template
J**
* init
* @return {[1} [1
*/
init args

super.init args

The framework creates a Base class if the type you created doesn’t exist, then other classes inherit from the Base class.

Introduce an Adaper

Bash

JavaScript

https://thinkjs.org/zh-cn/doc/2.0/model_intro.html#toc-d84
https://github.com/75team/www.thinkjs.org/tree/master/view/zh-cn/doc/2.0/model_sqlite.md
https://www.npmjs.com/package/pg
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/model_intro.html#toc-d84

You can introduce an Adapter by using think.adapter . For example:

JavaScript
let Template = think.adapter("template", "dot" // introduce Template Adapter named dot

let instance = new Template args); // introduce an Adapter and instantiate it.

Use third part Adapter

The framework searches Adapters from src/common/adapter and system path automatically, when it loads Adapters. You should regist third part Adapters if you need,
otherwise the framework can’t find them.

You can regist third part Adapters by using think.adapter , Forexample:

JavaScript
let DotTemplate = require('think-template-dot"'

think.adapter('template', 'dot', DotTemplate

Then, the Adaptor files in src/common/bootstrap/ can be loaded automatically when the service started.

Cache

It is very helpful to use caches proper correctly in projects. So, ThinkJS provide a variety of caching methods,includes: Memory cache, file cache, Memcache and redis.

Cache Types
ThinkdS supports the following cache types:

e memory Cache stored in Memory

e file Cache stored in file system

e memcache Cache stored in memcache
e redis Cache stored in redis

If you use Memcache or redis, you need set configuration information. See also configuration of memcache configuration of redis

Configurate Cache

The default cache configuration likes following. You can edit src/common/config/cache.js to change the configration.

JavaScript
export default

type: "file", // the cache type
timeout: 6 * 3600, // when the cache will expired , default is 6 hours
adapter // configurations of different type adaptor
file
path: think.RUNTIME_PATH + '/cache', // the path cache files put in
path_depth: 2, // max depth generated by cache files

file_ext: '.json' // cache files extend name

redis

prefix: 'thinkjs_

memcache
prefix: 'thinkjs_'

Note : ThinkJS supports adaptor configuration from the version 2.0.6 .

In memcache or redis cache type, the prefix field is used. In this case, ThinkJS uses key + prefix as the storage key to prevent the conflict with other projects. If you don’t want
to set prefix, you can set it to empty string, like this:

JavaScript
export default

prefix: "" // it set the prefix of cache key to empty.

Use Cache
You can add, delete, update and search the cache by using method think.cache , see also API -> think for more details.

You can usemethod this.cache to operate cache, if your class is inherited from think.http.base , see also AP| -> think.http.base for more details.

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/config.html#memcache
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/config.html#redis
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think.html#toc-7d7
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs//api_think_http_base.html#cache-name-value-options

Extend Cache

You can create a cache class named foo by using following command:

Bash
thinkjs adapter cache/foo
After the completion of the excuting, ThinkJS will create the file src/common/adapter/cache/foo.js . Then you need to implement the following methods to extend cache
class:
JavaScript
export default class extends think.cache.base
/**
* init

* @param {Object} options []
* @return {} [1

*/

init(options
//set gc type & start gc
this.gcType = 'cache_foo'
think.gc(this

/**

* get cache

* @param {String} name []
* @return {Promise} [1
*/

get(name

it
* set cache

* @param {String} name [1
* @param {Mixed} value [1
* @param {Number} timeout []
* @return {Promise}

*/

set(name, value, timeout

/**

* delete cache

* @param {String} name []
* @return {Promise} [1
*/

delete(name

/**

* gc function

* @return {Promise} []
*/

gc

To know the implemation of cache in ThinkJS, please see also (https:/github.com/75team/thinkjs/tree/master/src/adapter/cache)

Use Third Party Cache Adapter

To know how to use third party cache Adapter, please see also Adapter -> intro

Session

Session is always needed for user login. ThinkJS supports a variety of session adapters, Such as file , db , redis and so on.

Supported Session Types

e memory Session stored in memory
e file session stored in file system
e db session stored in database
e redis session stored in redis

https://github.com/75team/thinkjs/tree/master/src/adapter/cache
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/adapter_intro.html#toc-e7c

db Session

You need create a table in your database except MongoDB, if you want to use db session. You can use the following SQL statement to create:

sQL
DROP TABLE IF EXISTS think_session

CREATE TABLE think_session

id int(11) unsigned NOT NULL AUTO_INCREMENT
cookie® varchar(255) NOT NULL DEFAULT "'
data’ text
expire’ bigint(11) NOT NULL

PRIMARY KEY id

UNIQUE KEY " cookie cookie

KEY “expire expire

ENGINE=InnoDB DEFAULT CHARSET=utf8

The think should be replaced with the table prefix in database configuration.
redis Session

The redis session needs to configurate redis, see confirguration for more details.

Configurate Session
Session configuration is as follows, you can edit it in the file src/common/config/session.js :

JavaScript
export default

type: 'file'
name: 'thinkjs', // cookie name

secret // if the session cookie needs encrypt.
timeout: 24 * 3600, // session expire time, defaults to one day
cookie // cookie options

length: 32

adapter
file

path: think.getPath('common', ‘runtime') + '/session

Note : The framework supports adaptor configuration from the version 2.0.6 .

This configuration is about Cookie.

Read/Write Session

Controller or Logic can read/write session.

Read Session

JavaScript
export default class extends think.controller.base

* indexAction
//get session

let value = yield this.session('userInfo’

Write Session

JavaScript
export default class extends think.controller.base

* indexAction
//set session

yield this.session('userInfo', data

Clear Session

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/config.html#redis
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/config.html#cookie

export default class extends think.controller.base {
* indexAction(){
//clear session of current user

yield this.session();

-

http.session method of http object can read and write Session. See also AP| -> hitp for more details.

Extend Session

You can create a Session Adapter by using the command:

“thinkjs adapter session/foo”

this command will create file src/common/adapter/session/foo.js , then you need impement these methods:

export default class extends think.adapter.session {
/**
* init
* @param {Object} options []
* @return {} []
*/
init(options){

}

/**
* get Session
* @param {String} name []
* @return {Promise} [1]
*/

get(name){

}

/**
* set Session
* @param {String} name []
* @param {Mixed} value []
*/

set(name, value){

}

/**
* delete Session
* @param {String} name []
* @return {Promise} [1
*/

delete(name){

}

/**
* update Session
* @return {Promise} []
*/

flush(){

}

/**
* clear expired Session
* @return {Promise} []
*/

8c(){

-

To know the implement of Session in ThinkJS, please see also htips:/github.com/75team/thinkjs/tree/master/src/adapter/session.

Use Third Party Session Adapter

To know how to use third party session Adapter, please see also Adapter -> intro

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_http.html#toc-b20
https://github.com/75team/thinkjs/tree/master/src/adapter/session
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/adapter_intro.html#toc-e7c

WebSocket

WebSocket is usually used to implement various functions such as chatroom. ThinkJS supports a lot of WebSocket libraries, for instance, socket.io ,
more, by give a simple encapsulation to these libraries, ThinkJS provided us consistent interfaces.

Open WebSocket

WebSocket is closed by default. You can edit src/common/config/websocket.js toopen it:

export default
on: false, // whether open WebSocket

type: 'socket.io', // the WebSocket library name, defaults to socket.io

allow_origin: '', // origin allowed

adapter: undefined, // store adapter for socket, used in socket.io

path: "', // url path for websocket
messages

// open: 'home/websocket/open’,

Change the on fieldto true , and restart Node.js.

Map Event to Action

sockijs etc. Further

JavaScript

The encapsulation to WebSocket obeyed to the socket.io mechanism. The server and client communicate each other through events. So the server need map events to

actions in order to response correctly. The configuration is specified in messages field as following:

export default
messages

open: 'home/socketio/open', // works on Websocket connected.
close: 'home/socketio/close', // works on Websocket closed.

adduser: 'home/socketio/adduser', // works when adduser

JavaScript

The events name open , close are immutable, representing a connection or disconnection. Others can be custom, you can add according to your need.

Work With Action

Then, you can work with action like following code after finished above configuration.

export default class extends think.controller.base
/**
* works on Websocket connected
* @param {} self []
* @return {} []
*/
openAction(self
var socket = self.http.socket
this.broadcast('new message'
username: socket.username
message: self.http.data

emit

You can emit event to the current socket in Action through this.emit :

JavaScript

JavaScript
export default class extends think.controller.base

Vi

* works on Websocket connected

* @param {} self []

* @return {} [1

*/
openAction(self

var socket = self.http.socket

this.emit('new message', 'connected’

broadcast

You can broadcast event to all sockets in Action through method this.broadcast :

JavaScript
export default class extends think.controller.base
chatAction(self
var socket = self.http.socket
// broadcast to all sockets excepting the current.
this.broadcast('new message’ msg: 'message’, username: 'xxx'
Note :the broadcase method broadcast to all sockets except current one. You can set the third parameterto true to include current one.
JavaScript
export default class extends think.controller.base
chatAction(self
var socket = self.http.socket
// broadcast to all sockets including the current.
this.broadcast('new message' msg: 'message’', username: 'xxx' true
Socket Object
You can get socket object in Action through this.http.socket .
Event Data
You can get the event data in Action through this.http.data .
socket.io
The socket.io library encapsulates socket both front end and back end, it is very convenient to use.
io Object
You can getthe io objectin Action through this.http.io .ltis aninstance of socket.io
To know methods in io object, please see also http://socket.io/docs/server-api/#server(),
Set Path
The socket.io process pathis /socket.io by default. You can edit the folloing configuration if you need.
JavaScript

export default
path: '/other_path'

Note : After the server has modified the path, the client also should make the corresponding modification

Set Adapter

When using multiple nodes to deploy WebSocket, multiple nodes can communicate with Redis. You can get things done by set up adapter.

http://socket.io/docs/server-api/#server()

JavaScript
import redis from ‘socket.io-redis’;

export default {

adapter: function(){
return redis({ host: 'localhost', port: 6379 })

See also http://socket.io/docs/using-multiple-nodes/ for more detail.

socket.io Client

In browser end, you should introduce socket.io client. The download path is: http:/socket.io/download/,

JavaScript
var socket = io('http://localhost:8360");
// emit event
socket.emit('name’, 'data‘);
// listen event
socket.on('name', function(data){
b
This CDN url is available: http://s4.ghimg.com/static/535dde855bc726e2/socket.io-1.2.0.js,
Check User Login
Websocket can get cookie when connected. So, you can check if the user is logged in in the open Action. For example:
JavaScript
export default class extends think.controller.base {
* openAction(){
let userInfo = yield this.session('userInfo');
if(think.isEmpty(userInfo)){
}
}
N
Code Sample: Chat
See also https:/github.com/75team/thinkjs2-demos/tree/master/websocket-socket.io for more detailed chat code.
SockJS
Configuration
You should edit the type field in the configuration to sockjs :
JavaScript
export default {
type: 'sockjs'
N
J
Sockjs Object
You can get sockjs object through this.http.sockjs in Action. The object is an instance of SocketJS.
Set path
The SocketJS process pathis /sockijs by default.You can edit the folloing configuration if you need change.
JavaScript

export default {
path: ‘/websocket'

SockdJS Client

In Browser end, you should introduce SockdJS client. The download path is: https:/github.com/sockjs/sockjs-client,

SockdJS client does not do too much encapsulation, so you need encapsulate it by yourself, change it to the event way, in order to follow the server side. The encapsulate method is

http://socket.io/docs/using-multiple-nodes/
http://socket.io/download/
http://s4.qhimg.com/static/535dde855bc726e2/socket.io-1.2.0.js
https://github.com/75team/thinkjs2-demos/tree/master/websocket-socket.io
https://github.com/sockjs/sockjs-client

as follows:

JavaScript
SockJS.prototype.emit = function(event, data

this.send(JSON.stringify({event: event, data: data

SockJS.prototype.events =
SockJS.prototype.on = function(event, callback
if(!(event in this.events

this.events[event]| =
this.events[event].push(callback

SockJS.prototype.onmessage = function(e
var data = JSON.parse(e.data
var callbacks = this.events|[data.event] ||
callbacks.forEach(function(callback
callback && callback(data.data

Sock3JS.prototype.onopen = function
this.onmessage(JSON.stringify({data: {event: 'open

SockJS.prototype.onclose = function
this.onmessage(JSON.stringify({data event: ‘close’

After do above, we can receive and emit message, for example:

JavaScript
var socket = new SockJS('/sockjs"' // this path must be same with configuration.Defaults to /sockjs

// listen event

socket.on('add user', function(data

// emit event

socket.emit('new message', 'xxx'

Check User Login

For the safety reason, the SockJS doesn’t supply cookie. So you can’t check if the user is logined through cookie. You can output a token in your page, then send the token when
connected to check.See also https://github.com/sockjs/sockjs-node#authorisation for more details.

Code Sample: Chat

See also https:/github.com/75team/thinkjs2-demos/tree/master/websocket-sockjsfor more detailed chat code

Nginx Reverse Proxy Setting

Fromthe 1.3.13 version, Nginx supports reverse proxy WebSocket request, if used in the project, you need to add the following configuration in the nginx configuration file:
nginx

proxy_set_header Upgrade
proxy_set_header Connection "upgrade"

Note : whenusing thinkjs command to create project, ThinkJS creats nginx configuration file , including these two configuration fields. You can use it directly.

Please visit http:/nginx.org/en/docs/http/websocket.html to read the reverse proxy WebSocket request document.

How to get current WebSocket connecting object

You can get an array of WebSocket connecting objects by using thinkCache (thinkCache.WEBSOCKET) .
How to achieve private chat

ThinkJS has not supported private chat yet, you can implement it by first find all of the WebSocket connections, and then match the corresponding connections.

Template
Template Adapter used to support a variety of types of template engines, such as ejs , swig , etc.

Supported Template Engines

https://github.com/sockjs/sockjs-node#authorisation
https://github.com/75team/thinkjs2-demos/tree/master/websocket-sockjs
http://nginx.org/en/docs/http/websocket.html

e base

e ejs ejstemplate engine

e jade jade template engine

e swig atemplate engine suports template inheritance
e nunjucks a powerful template engine like jinja2

Template Engine Configuration

To configuate template engine, edit src/common/config/view.js :

JavaScript
export default
type: ‘ejs’
options // Additional configuration of the specific template engine
Use Template Engines
The template engine can be loaded automatically in the View. If you want to specify a template engine, then do it this way:
JavaScript
let EjsTemplate = think.adapter('template', 'ejs’
let instance = new EjsTemplate args
Extend Template Engine Type
You can create an Template class named foo using the following command:
JavaScript
thinkjs adapter template/foo
The command creates file src/common/adapter/template/foo.js .Then, you should implement the following methods:
JavaScript

export default class extends think.adapter.base

et

* get compiled content

* @params {String} templateFile the template files directory

* @params {Object} tVar variables in template

* @params {Object} config the configuration of template engine
* @return {Promise} []

*/

run(templateFile, tvar, config

To know the implement of Template in ThinkJS, please see also https://github.com/75team/thinkjs/tree/master/src/adapter/template,

Use Third Part Template Adapter

To know how to use third part template adaptor, please see alsoAdapter -> intro.

Middleware

Middleware

Handling user requests needs to take a lot of processes, such as parsing parameters, determining whether it is a static resource access or not, route parsing, page staticize
judgment, executing actions, searching templates, rendering templates and so on. The project may also increase some other processes according to the requirements, like
determining whether the IP is in the blacklist, CSRF detection and so on.

ThinkJS uses middlewares to handle these logics, each logic is an independent middleware. Many hooks are buried in the request process, each hook executes a series of
middleware serially. And finally, one request logic process is completed.

Hook List
ThinkdS contains the following hooks.

e request_begin request start

https://github.com/75team/thinkjs/tree/master/src/adapter/template
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/adapter_intro.html#toc-e7c

e payload parse parse the data submitted

e payload validate verify the data submitted

e resource static resource request process
e route parse route parse

e logic_before before logic process

e logic_after afterlogic process

e controller before before controller process

e controller after after controller process

e view before before view process
e view template View process

e view parse View parse

e view filter view content filter

e view after after view process

e response end response end

Each hook calls one or more middleware to complete processing. The included middlewares are as the following:

export default
request_begin

payload_parse 'parse_form_payload', 'parse_single_file_payload', 'parse_json_payload'

payload_validate ‘validate_payload'

resource ‘check_resource', 'output_resource’
route_parse 'rewrite_pathname', 'subdomain_deploy', 'parse_route'
logic_before ‘check_csrf'

logic_after

controller_before
controller_after

view_before

view_template 'locate_template’
view_parse 'parse_template’
view_filter

view_after

response_end

Config Hook

'parse_querystring_payload’

JavaScript

The middlewares executed default by hook usually can not meet the needs of the project. By this time, you can modify the middleware corresponding to the hook. The config file of

hook is src/common/config/hook.js

export default
payload_parse ‘parse_xml' // parse xml

The above config will override the default config. If you want to add them in the original config, you can use the following ways.

Append in Front

export default

payload_parse ‘prepend’, 'parse_xml' //append parse xml in front

Append in End

export default

payload_parse ‘append’, ‘parse_xml' //append parse xml in end

Note : Itis recommended to use the way of append to config middleware, the name of system middleware may be modified in subsequent versions.

Execute Hook

Use the method think.hook to execute the corresponding hook. eg.

await think.hook('payload_parse', http, data

//return a Promise

Use this.hook to execute hook directly in the class containing http object. eg.

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript
await this.hook('payload_parse', data

Create Middlewares
ThinkJS supports two modes of middleware, they are class mode and funcion mode. You can determine which mode to use depending on the complexity of middleware.

Class Mode

If middleware needs to execute complex logic, you need to define it as class mode. Use the command thinkjs to create middleware, execute the following command in the
project directory.

Bash
thinkjs middleware xxx
After execution, you will see the corresponding file src/common/middleware/xxx.js .
ES6 Mode
JavaScript
‘use strict’
/**
* middleware
*/
export default class extends think.middleware.base
J*x
* run
* @return {} []
*/
run
Dynamic Creation Class Mode
JavaScript

‘use strict’

/**
* middleware
*/
module.exports = think.middleware
yass
* run

* @return {} []
*/
run: function

Middlewares will be passed in http , youcanuse this.http to getit. The logic codes are executed in the method run . If they contain asynchronous operation, you need to
returna Promise Oruse */yield .

Function Mode

If middlewares need to execute simple logic, you could define it as function mode. This middleware is not recommended to be created as a separate file, but to put together
instead.

You could create the file src/common/bootstrap/middleware.js , which will be loaded automatically when service starts. And you can add one or more function mode
middleware in this file. eg.
JavaScript
think.middleware('parse_xml', http =>
if ('http.payload

return

Function mode middlewares will be passed http object as a param. If the middleware has asynchronous operation, it need to return a promise or use Generator Function.

The following is the implementation of parsing json payload in framework.

JavaScript
think.middleware('parse_json_payload', http =>
let types = http.config('post.json_content_type"'
if (types.indexOf(http.type === -1
return

return http.getPayload().then(payload =>
try
http._post = JSON.parse(payload
catch(e

Set Value After Parsed

Some middlewares may parse the corresponding datas, and want to reassign http object. Such as parse the xml data passed, but hope to use the method http.get to get

later.

e http. get store the value of GET params, http.get(xxx) to get data from this object
e http. post store the value of POST params, http.post(xxx) to get data from this object
e http. file store the value of uploaded file, http.file(xxx) to get data from this object
JavaScript
think.middleware('parse_xml', http =>
if (!'http.payload
return

return parseXML(http.payload).then(data =>
http._post = data; //assign the parsed data to http._post, use http.post to get value later

See AP -> hitp for more information about http .

Prevent the Subsequent Execution

When executing the certain conditions, some middlewares may want to prevent the subsequent logic to execute. such as IP blacklist judgement, if hit the blacklist, then directly
refuse the current request and no longer execute the subsequent logic.

ThinkJS provides the method think.prevent for preventing the subsequent logic to execute. This method returns a specific type of Reject Promise.

JavaScript
think.middleware('parse_xml', http =>
if (!http.payload
return

var ip = http.ip
var blackIPs = ['123.456.789.100"
if(blackIPs.indexOf(ip) > -1

http.end // directly end the current request

return think.prevent // prevent the subsequent codes to execute

In order to prevent the subsequent logic to execute, beside using the method think.prevent , you can also use think.defer().promise to return a Pending Promise.

If you don’t want to end the current request directly, but return an error page instead, ThinkdS provides the method think.statusAction . See Extend Function -> Error Handle

for detailed usage.

Use Third-Party Middlewares

You can use third-party middlewares by use think.middleware . The corresponding code isin src/common/bootstrap/middleware.js .eg.

JavaScript
var parseXML = require('think-parsexml’

think.middleware('parseXML', parseXML

Then just put parsexML config into hook.

It is recommanded to release the common middlewares of project to npm repository. And the name of middleware is suggested to use think-xxx .

Third-party Middleware List

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_http.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/error_handle.html

See plugin -> middleware for the third-party middleware list.

CSRF

ThinkJS provides a middleware to handle CSRF, but it’s off by default.

Turn CSRF On

Modify src/common/config/hook.js like this:

JavaScript
export default
logic_before ‘prepend', 'csrf'
Configure
The default configure of CSRF is as following, you can modify them in src/common/config/csrf.js :
JavaScript
export default
session_name: '__CSRF__', // Token value saved in session
form_name: '_CSRF__', // CSRF key name, we can get value by this key and check the value

errno: 400, //error number

errmsg: 'token error' // error message

Subdomains Deploy

When your projects become complicated, you may want to deploy different modules to different domains, but their code is still placed in one project folder. For example, the URL
admin.example.com is deployed with admin dashboard function, and that’s mappped to the admin module. ThinkJS provides subdomain middleware to handle this demand.

Configuration

You can start this middleware by chaning src/common/config/hook.js :

JavaScript
export default
route_parse ‘prepend’, 'subdomain’
Then add the configuration about subdomains deploy in config/config.js :
JavaScript

export default
subdomain
admin: 'admin', //It will map "admin.example.com’ to admin module.

If original pathname is group/detail , if your domain hostis admin.example.com , the pathname received in ThinkJS will change to admin/group/detail .

Ban Port Access

Description
Online applications usually have Nginx as the reverse proxy. Nginx will redirect user requests to Node.js. Have reverse proxy will be easy to do load balance.

Once you have the reverse proxy, you usually want to ban the requests that directly accessed to the Node.js’s port. At this time, you can set the Node.js port could only be
accessed internally, or you must taking a judge in application level.

ThinkJS provides middleware to ban port access. If it’s trouble to ban port access in host directly, you can take replace of Middleware to do it.

Middleware Configuration

Modify src/common/config/hook.js as following:

file:///plugin.html#middleware

JavaScript
export default

request_begin 'prepend’, 'force_proxy'

Then modify src/common/config/env/production.js

JavaScript
export default

proxy_on: true

This will only ban port access in production environment and there is no effect in development environment.

Listen Local Port Only

The default host Node.js listening when it starts service is 0.0.0.0 . It allows requests both coming from interior and outside. You can change itto 127.0.0.1 to allow local
requests only.

You can modify src/common/config/config.js as following:

JavaScript
export default

host: '127.0.0.1'

More Features

TypeScript

TypeScript is a free and open source programming language designed by Microsoft. TypeScript is a typed superset of JavaScript that it has some useful function in large project
such as optional static type.

ThinkJS 2.1 has support TypeScript, you can auto-compile and auto-update in your projects.

Create TypeScript Projects

We can create Typescript projects by using --ts :

Bash
thinkjs new thinkjs_demo --ts

TypeScript’s file extension is .ts . If you want to create Typescript file manually, the postfix should be .ts too, or it will trigger error when calling tsc to compile.

.d.ts file

.d.ts files are the description file of third party libraries. When we create our projects, the file named typings/thinkjs/think.d.ts will be created as ThinkdS’s description
file. You can include this description file in your project files as the following:

JavaScript
/// <reference path="../../../typings/thinkjs/think.d.ts" />

This code must be placed on the first line in the file, and the path must be correct. If your file has use strict , this code should set after use strict .

If your projects rely on other third party libraries, you should install their description files respectively. You can finish installation by use the tsd.

You can find description file of some third party libraries in https:/github.com/Definitely Typed/Definitely Typed.

TypeScript Compiling

Because of there are some faults in compiling TypeScript, we have chosen to compile TypeScript .ts files to ES6 code first, then we compile the ES6 code to ES5 code using
Babel 6.

If you find any problem about TypeScript, you can open an issue on hitps:/github.com/Microsoft/TypeScript,

Change Existing Projects To Using TypeScript

For projects that have used the ES6/7 features, ThinkJS could also supports to update them to use TypeScript.

Change Entry File

http://www.typescriptlang.org/
http://definitelytyped.org/tsd/
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/Microsoft/TypeScript

Change entry file www/development.js as following:

JavaScript
//compile src/ to app/
instance.compile
log: true
type: 'ts' //TypeScript
Modify package.json
Clear all dependencies related to Babel and ThinkJs and append following dependencies:
{
"dependencies": {
"thinkjs": "2.1.x",
"babel-runtime": "6.x.x"
1
"devDependencies": {
"typescript": "next",
"babel-cli": "6.x.x",
"babel-preset-es2015-loose": "6.x.x",
"babel-preset-stage-1": "6.x.x",
"babel-plugin-transform-runtime": "6.x.x",
"babel-core": "6.x.x"
}
}
If some modules in dependencies and devDependencies have been used, they should be merged together.
After modifying, run npm install to install all dependencies.
Modify .thinkjsrc
Change project’s configration file .thinkjsrc to:
JavaScript
"createAt": "2016-01-13 17:27:19"
"mode": "module"
"ts": true
Downloading think.d.ts Description File
Downloads file https:/github.com/75team/thinkjs/blob/master/template/think.d.ts and save it as typings/thinkjs/think.d.ts ,
Modify File Extension
Modify all .js filesin src to .ts files.
Add bin/compile.js File
Downloads file https:/github.com/75team/thinkjs/blob/master/template/bin/compile.ts and save itas bin/compile.js .
Modify Compiling Command
Change compiling command in package.json t0o node bin/compile.js
Add Description File In Project’s Discription File
Allfilesin src/ must add the following code in its first line, releative path should be correct:
JavaScript

/// <reference path="../../../typings/thinkjs/think.d.ts" />
Run npm start to start service after finished all modifying.

Logic

When handling user requests in Action, you often need to get the submitted datas firstly, and then validate them. Only passing the data validation can do the subsquent operations.
After the param validation, sometimes, you also need to judge permission. After all of these are correct, it is time to do the real logic process. If these codes are all placed in one

https://github.com/75team/thinkjs/blob/master/template/think.d.ts
https://github.com/75team/thinkjs/blob/master/template/bin/compile.ts

Action, it will must make the codes of Action very complex and redundant.

In order to solve this problem, ThinkJS add a layer of Logic before Controller. The Action in Logic and the Action in Controller are one-to-one correspondence. System will call
the Action in Logic automatically before calling the Action in Controller.

Logic Layer

The directory of Logic is src/[module]/logic . When usingcommand thinkjs controller [name] to create Controller, there will automatically create the corresponding
Logic. The codes of the Logic are roughly like the followings.

JavaScript
‘use strict’

/**
* logic
* @param {} []
* @return {} [1]
*/
export default class extends think.logic.base
/**

* index action logic

* @return {} []
*/
indexAction

The Action in Logic and the Action in Controller are one-to-one correspondence. The Action in Logic also supports ~ before and after and other magic methods.

Request Type Validation

Only a couple of request types will be used in one specific Action. You can config some specific request types to validate them.

JavaScript
export default class extends think.logic.base

indexAction

this.allowMethods = 'post'; //allow post request only

testAction

this.allowMethods = 'get,post'; //allow get and post requests only

Data Validation Config
The config of data validation is as follows.

JavaScript
export default class extends think.logic.base

indexAction
let rules =
doc: "string|default:index"
version: "string|in:1.2,2.0|default:2.0"

Config Format

The config formatis field name -> config , each field config supports multiple validation types. The multiple validation types are separated by | , the validation type and
param are separated by : , param and param are seperated by , .

Param Format

Params could follow the end of validation type. Besides supporting simply string params separated by commas, it also supports the complex param in JSON format.

JavaScript
export default class extends think.logic.base

indexAction
let rules =
fieldl: "array|default:[1,2]", // param is an array
field2: 'object|default:{\"name\":\"thinkjs\"}' //param is an object

ThinkdJS also allow you config it with object like:

JavaScript
export default class extends think.logic.base
indexAction
let rules =
fieldl: {required: true, array: true, default: [1, 2 //parameter is array
field2: {object: true, default: {name: "thinkjs"}} //parameter is object

Supported Data Type

The supported data types include boolean , string , int , float , array , object .And the defaulttypeis string .

Default Value

Use default:value to define the default value of field. If the value of current field is empty, it will be overrided by the default one. What you get subsequently will be the default
value.

The Way to Get Data

By default, get the field value according to the current request type. If the type of current request is GET, use this.get('version') to getthe value of version field. If the
type of current request is POST, use this.post to get the field value.

But sometimes in the POST type, you may want to get the params from uploaded file or URL. By this time, you need to specify the way to get data. The supported ways to get data
are get , post and file .

JavaScript
export default class extends think.logic.base

Va3
* save data, POST request
* @return {} []
*/
saveAction
let rules =
name: "required"
image: "object|file|required"

version: "string|get|in:1.2,2.0|default:2.0"

The above demo specifys to use post method to get the value of the field name ,use file method to get the value of the field image ,use get method to get the value of
the field version .

Error Message

The above config only specify the certain validation rules but not the error message when validation failure. Error messages support internationalizaion, you need to define it in the
config file src/common/config/locale/[lang].js .eg

JavaScript
// src/common/config/locale/en.js

export default
validate_required: '{name} can not be blank

validate_contains: '{name} need contains {args}

The keyis validate + validation type name . The value supports two params: {name} and {args} , which respectively indicate the field name and the passed
param.

If you want to define the detailed message of a certain error type for a specific field, you could add a field name to the end. eg.

JavaScript
// src/common/config/locale/en.js

export default
validate_required: '{name} can not be blank

validate_required_email: ‘'email can not be blank', //specify the error message of required for email field

Data Validation Method
After configing the validation rules, you can use the method this.validate to validate. eg.

JavaScript
export default class extends think.logic.base

indexAction
let rules =
doc: "string|default:index"
version: "string|in:1.2,2.0|default:2.0"

let flag = this.validate(rules
if(!flag

return this.fail('validate error', this.errors

If the return value is false , you could use method this.errors to getthe detailed error message. After getting the error message, you could use method this.fail to
output it in JSON format, or use method this.display to outputa page.

In template, you can get the error message by errors field. The following is the way to show error message (taking ejs template as an example).
Markup
%for(var field in errors){%

%-field%>:<%errors[field]%
%)%

Validate Automatically

In generally, there will output a JSON message after validation failure. If this.validate needs to be called manually evertime to validate in Action of Logic, it must be
inconvenient. You can make the validation automatically by assigning validation rules to this.rules . eg.

JavaScript
export default class extends think.logic.base

indexAction
this.rules =
doc: "string|default:index"
version: "string|in:1.2,2.0|default:2.0"

After assigning validation rules to this.rules , the validation will be automatically done after Action execution. If there are errors, it will directly output error messages in JSON
format. Automatical validation uses the magic method _ after to complete.

Supported Validation Type
required
Required ltem.

JavaScript
export default class extends think.logic.base

indexAction
let rules =

name: ‘required' //the value of name is required

requiredIf

When the value of the other certain item is one of the specified values, this item is required. eg.

JavaScript
export default class extends think.logic.base

indexAction
let rules =

name: 'requiredIf:email,admin@example.com,adminl@example.com’

When the value of email isone of admin@example.com and adminl@example.com , the value of name is required.

requiredNotlIf

When the value of the other certain item is not one of the specified values, this item is required. eg.

JavaScript
export default class extends think.logic.base
indexAction
let rules =
name: 'requiredNotIf:email,admin@example.com,adminl@example.com’
When the value of email is notone of admin@example.com Or adminl@example.com ,the value of name is required.
requiredWith
When one of the values of some other certain items does exist, this item is required. eg.
JavaScript
export default class extends think.logic.base
indexAction
let rules =
name: 'requiredWith:email,title’
When one of the values of email and title does exist, the value of name is required.
requiredWithAll
When all of the values of some other certain items do exist, this item is required. eg.
JavaScript
export default class extends think.logic.base
indexAction
let rules =
name: 'requiredWithAll:email,title’
When all of the values of email and title do exist, the value of name is required.
requiredWithout
When one of the values of some other certain items does not exist, this item is required. eg.
JavaScript
export default class extends think.logic.base
indexAction
let rules =

name: 'requiredWithout:email,title’

When one of the values of email and title does not exist, the value of name is required.

requiredWithoutAll

When all of the values of some other certain items do not exist, this item is required. eg.

export default class extends think.logic.base {
indexAction(){
let rules = {
name: 'requiredWithoutAll:email,title’

When all of the values of email and title do not exist, the value of name

contains

The value needs to contain the certain value.

export default class extends think.logic.base {
indexAction(){
let rules = {

name: 'contains:thinkjs' //need to contain string 'thinkjs'.

-

equals

Be equal to the value of the other item.

export default class extends think.logic.base {
indexAction(){
let rules = {
name: 'equals:firstname’

The value of name needs to be equal to the value of firstname .

different

Be different to the value of the other item.

export default class extends think.logic.base {
indexAction(){
let rules = {

name: 'different:firstname’

The value of name can'tto be equal to the value of firstname .

before

The value needs to be before a certain date. By default, it needs to be before the current date.

export default class extends think.logic.base {
indexAction(){
let rules = {
start_time: 'before', //need to be before the current date

start_timel: 'before:2015/10/12 10:10:10' //need to be before 2015/10/12 10:10:10

after

is required.

The value needs to be after a certain date. By default, it needs to be after the current date.

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript
export default class extends think.logic.base

indexAction
let rules =
end_time: ‘after', //need to be after the current date
end_timel: 'after:2015/10/10' //need to be after 2015/10/10

alpha

The value must only consist of [a-zA-Z].

JavaScript
export default class extends think.logic.base

indexAction
let rules =
en_name: 'alpha’

The value of en_name must only consist of [a-zA-Z].
alphaDash

The value must only consist of [a-zA-Z_].
alphaNumeric

The value must only consist of [a-zA-Z0-9].
alphaNumericDash

The value must only consist of [a-zA-Z0-9_].
ascii

The value must only consist of ascii.
base64

The value must only consist of base64.
byteLength

The length of bytes needs to be in a certain range.

JavaScript
export default class extends think.logic.base

indexAction
let rules =
name: 'bytelength:10' // the length of bytes can not less than 10
namel: 'bytelength:10,100' //the length of bytes must be in the range of 10 to 100

creditcard

The value needs to be a credit card number.

currency
The value needs to be a currency.
date

The value needs to be a date.

decimal

The value needs to be a decimal.
divisibleBy

The value needs to be divisible by a number.

JavaScript
export default class extends think.logic.base
indexAction
let rules =
count: 'divisibleBy:3' //could to be divisible by 3
email
The value needs to be email format.
fqdn
The value needs to be a qualified domain name.
float
The value needs to be a float.
JavaScript
export default class extends think.logic.base
indexAction
let rules =

money: ‘float' //need to be a float
moneyl: 'float:3.2' //need to be a float, and the minimum is 3.2
money2: 'float:3.2,10.5"' //need to be a float, and the minimum is 3.2, the maximum is 10.5

fullwidth

The value needs contain full width char.
halfWidth

The value needs contain half width char.
hexColor

The value needs to be a hex color value.
hex

The value needs to be hex.

ip

The value needs to be ip format.

ip4

The value needs to be ip4 format.

ip6

The value needs to be ip6 format.

isbn

The value needs to be a book serial number.
isin

The value needs to be ISIN (International Securities Identification Numbers).

is08601

The value needs to be iso8601 date format.

in

The value needs to be in some certain values.

JavaScript
export default class extends think.logic.base {
indexAction(){
let rules = {
version: 'in:1.2,2.0' //need to be one of 1.2, 2.0
}
}
}
noin
The value needs to be not in some certain values.
JavaScript
export default class extends think.logic.base {
indexAction(){
let rules = {
version: 'noin:1.2,2.0' //need to be not in 1.2, 2.0
}
WJ,
1
s
int
The value needs to be int.
JavaScript
export default class extends think.logic.base {
indexAction(){
let rules = {
value: 'int' //int
valuel: 'int:1' //can not less than 1
value2: 'int:10,100' //need to be in the range of 10 to 100
¥
}
N
J
min
The value can not less than the certain value.
JavaScript
export default class extends think.logic.base {
indexAction(){
let rules = {
value: 'min:1@' //can not less than 10
N
J
1
J
1
J
max
The value can not great than the certain value.
JavaScript

o

export default class extends think.logic.base {
indexAction(){
let rules = {
value: 'max:10' //can not great than 10

-

length

The length needs to be in the certain range.

JavaScript
export default class extends think.logic.base
indexAction
let rules =
name: 'length:10' //the length can not less than 10
namel: 'length:10,100' //the length need to be in the range of 10 to 100

minLength

The length can not to be less than the min-length.

JavaScript
export default class extends think.logic.base
indexAction
let rules =
name: 'minLength:10' //the length can not to be less than 10
maxLength
The length can not to be great than the max-length.
JavaScript
export default class extends think.logic.base
indexAction
let rules =
name: 'maxLength:10' //the length can not to be great than 10
lowercase
The value needs to be all lowercase.
uppercase
The value needs to be all uppercase.
mobile
The value needs to be a mobile phone.
JavaScript
export default class extends think.logic.base
indexAction
let rules =

mobile: 'mobile:zh-cn' //must be a chinese mobile phone

mongold

The value is the ObjectID of MongoDB.
multibyte

Include multibyte char.

url

The value is url.

order

Database query order, like name DESC.

field

Database query field, like name,title.
image

Whether the file uploaded is a pic
startWith

The value starts with some certain chars.
endWith

The value ends with some certain chars.
string

The value is string.

array

The value is array.

boolean

The value is boolean.

object

The value is object.

regexp

RegExp, such as:

export default class extends think.logic.base
indexAction
this.rules =
number
required: true

regexp

Extending Validation Types

If the default supported validation types can not meet the demand, you can use the method think.validate to extend the validation types. eg.

// src/common/bootstrap/validate.js
think.validate('validate_name', (value args
//need to return true or false

//true-validate sucess, false-validate fail

The above registers a validation type named validate name , thus, you can directly use this validation type in Logic.

Param Parse

JavaScript

JavaScript

If you want to parse args , you can register a function. eg. the name of the above validation type is validate name , then the corresponding name of parse param is

_validate name ,thatis _ + validation type

think.validate('_validate_name' args, data) =>

let argd = args[@

args[0] = data[arg@].value; //parse the first param field name to the corresponding param value

return args

JavaScript

Thinkjs Command

After installing thinkjs module globally, there should be the thinkjs commands in your system. Run the command thinkjs -h inyour terminal to get more detailed introduction.

Usage: thinkjs [command] <options ...>
Commands :
new <projectPath> create project
module <moduleName> add module

controller <controllerName> add controller
service <serviceName> add service
model <modelName> add model

middleware <middlewareName> add middleware

adapter <adapterName> add adapter
Options:
-h, --help output usage information
-V, --version output the version number
-e, --es6 use es6 for project, used in “new’ command
-r, --rest create rest controller, used in “controller® command
-M, --mongo create mongo model, used in “model’ command
-R, --relation create relation model, used in “model® command

-m, --mode <mode> project mode type(mini, normal, module), default is module, used in “new’ command

Create Project

You can create a project by run command thinkjs new <projectPath> :

Bash
thinkjs new thinkjs_demo
ES6 Way
If you want to create an ES6 mode project, --es6 option is required. Thus, codes in the generated files are all in ES6 syntax.
Bash
thinkjs new thinkjs_demo --es6
Set Project Mode
By default, new created project is divided by modules. If the project is small and you don’t want to have it divided by modules, you can specify --mode option when creating
project. eg.
Bash
thinkjs new thinkjs_demo --mode=mini
The following is the supported modules list:
e mini single-module project, for a very simple project.
e normal genneral project, which modules are divided according to the function.
e module divided by modules, for large projects or the project strictly divided by modules.
Note : After the project created, a hidden file named .thinkjsrc will be created in the project directory, which contains some configuration of the current project. And this
hidden file will affect subsequent creating files, so you need to put it into the version repository.
Add Module
The module common and home will be automatically created when creating projects. If you need to create other modules, you can execute the command
thinkjs module [name] in the project directory. eg.
Bash

thinkjs module admin

After execution, the directory src/admin and the corresponding files in it will be created.

Add Middleware

You can add middleware by run the command thinkjs middleware [name] in the project directory. eg.

Bash
thinkjs middleware test

Execute it will create the file src/common/middleware/test.js .

Add Model

You can add model by run the command thinkjs model [name] in the project directory. eg.

Bash
thinkjs model user

Execute it will create the file src/common/model/user.js .

This file is in the common module by default. If you want to create it in other module, just specify the module. eg.

Bash
thinkjs model home/user

Thus, it will create the file src/home/model/user.js , whichisinthe home module.

Add Mongo Model

By default, the added model is relational database model. If you want to create Mongo Model, specify --mongo option. eg.

Bash
thinkjs model home/user --mongo

Add Relation Model

Specify --relation option to create Relation Model. eg.

Bash
thinkjs model home/user --relation

Add Controller

You can add controller by run the command thinkjs controller [name] in the project directory. eg.

Bash
thinkjs controller user

After execution, there will create the file src/common/controller/user.js , andthe file src/common/logic/user.js will be also created at the same.

These created files are in the common module by default. If you want to create them in other module, specify the module. eg.

Bash
thinkjs controller home/user

Thus, it will create the file src/home/controller/user.js , whichisinthe home module.

Add Rest Controller

If you want to privide Rest API, specify --rest option. eg.

Bash
thinkjs controller home/user --rest
Add service

You can add service by the command thinkjs service [name] in the project directory. eg.

Bash
thinkjs service github; #create the service that calls github interface

After execution, there will create the file src/common/service/github.js .

This created file is in the common module by default. If you want to create it in other module, specify the module. eg.

Bash
thinkjs service home/github

Thus, it will create the file src/home/service/github.js , whichisinthe home module.

Add adapter

You can add adapter by the command thinkjs adapter [type]/[name] in the project directory. eg.

Bash
thinkjs adapter template/dot

After execution, there will create the file src/common/adapter/template/dot.js , which means a template type adapter named dot.

Add Plugin

Two kinds of plugins ThinkJS supported are middleware and adapter. You can initialize a plugin by the command thinkjs plugin <pluginName> , and then to develop.

Bash
thinkjs plugin think-template-dot

It suggested that the name of plugin could start with think- , so that it’s convenient to search for other users after the plugin release to npm repository.

Static Resources Access

We generally need to reference static resources in a template when developing projects.

When using the command thinkjs to create a project, it will automatically create the directory www/static , where specially stores JS, CSS, images and other static
resources.

Access Static Resources

After putting the static resources in www/static , you can reference them in a template by the following approaches.

Reference JS files in template

Markup
script src="/static/js/foo.js script

Reference CSS files in template

Markup
link href="/static/css/foo.css” rel="stylesheet

Reference Image files in template

Markup
img src="/static/img/foo.png" alt

Static Resources Access Configuration

Judging whether the request is a static resource request, we use regular expression. The default configuration is as follows.

JavaScript
export default

resource_on: true, // enable static resources resolution function

resource_reg // regular expression for judging static resource request

You can modify the configuration file src/common/config/config.js according to your project requirements.

Close Online Static Resources Access

After the project is online, it generally uses nginx or other WEB server as a angent. At this time, you can let nginx to directly handle the static resource requests. Thus, you could
close the static resources access to improve performance.

Set the option resource on to false inthe configuration file src/common/config/env/prodution.js to close it. eg.

JavaScript
export default

resource_on: false

Service

Some projects need to call some third-party services like Github related interfaces. If codes in the controller directly call these interfaces, on the one hand it will lead to code

complexity, on the other hand it could not do more code reuse.

For these cases, you can encapsulate some services for controllers to call.

Create Services

Use the command thinkjs service [name] to create service. See Extend functions -> ThinkJS Command -> Add Service for more detailed usage.

The default generated service is a class. But some services only need to provide some static methods, at that time you could just change class to object.

Load Services

Use think.service toload services. eg.

JavaScript
export default class extends think.controller.base
indexAction
let GithubService = think.service('github
let instance = new GithubService
If you want to load service across-modules, use the following approaches.
JavaScript
export default class extends think.controller.base
indexAction
let GithubService = think.service('github', 'admin' //load github service in admin
let instance = new GithubService
Node : If the project is not very complex, it's suggested that put service in the module common . Thus, they are both convenient to load.
Cookie
Get Cookie
In controller or logic, you can get cookie by use this.cookie .eg.
JavaScript
export default class extends think.controller.base
indexAction
let cookie = this.cookie('theme’ //get the cookie 'theme'
Http object also provides the method cookie to get cookie. eg.
JavaScript
let cookie = http.cookie('theme’
Cookie Config
The cookie default config is as follows.
JavaScript
export default
domain
path: '/’
httponly: false, // whether http only
secure: false
timeout: @ // valid time, ©-browser process, unit is second
The default cookie is invalid along with the closing of browser process, and you can modify it in the config file src/common/config/cookie.js .eg.
JavaScript

export default
timeout: 7 * 24 * 3600 //set cookie valid time to 7 days

Set Cookie

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/thinkjs_command.html#add-service

In controller or logic, you can set cookie by use this.cookie . eg.

JavaScript
export default class extends think.controller.base
indexAction
this.cookie('theme', 'default' //set cookie theme to default
Http object also provides the method cookie to set cookie. eg.
JavaScript
http.cookie('theme', 'default'
If you want to change some params when setting cookie, you can use these three params like the followings.
JavaScript
export default class extends think.controller.base
indexAction
this.cookie('theme', 'default’

timeout: 7 * 24 * 3600 //set cookie valid time to 7 days

Babel

We upgraded Babel from 5 to 6 in ThinkJS 2.1. Because Babel 6 is a refactored version that all functions build by plug-ins, and many modules of it relied on different plug-ins. That
will leads to some problems:

e The node_modules directory will be too big, and be very slow at the first run.
o On Windows hosts, some errors may be reported because of the deep path.

The best solution is to upgrade your npm to version 3. Use following command to upgrade:

Bash
npm install -g npm@3
Change compile parameters
The default compile parameters of Babel 6 are:
JavaScript
presets 'es2015-loose', 'stage-1
plugins 'transform-runtime
If the configure here doesn’t satisfy with your requirements, you can modify it in file www/development.js :
JavaScript

instance.compile

retainLines: true

log: true
presets //appended presets list
plugins //appended plugins list

At some point, before your deploy, you want to run npm run compile , this will actually call the compile scriptin package.json . So, if you have set presets or
plugins list, then you should change the compile command accordingly.

Error Handling

The application will encounter all kinds of errors when handling user requests. Such as system internal error, url not exist, permission denied, service unavailable and so on. In
these cases, it needs to show the corresponding error page for users.

Error Page
When using the command thinkjs to create project, it will automatically add the error handle logic file and the corresponding error page.

The error logic file is located in src/common/controller/error.js , and its content is roughly as follows.

JavaScript
‘use strict';

/**
* error controller
*/
export default class extends think.controller.base {
/**
* display error page
* @param {Number} status []
* @return {Promise} []
*/
displayErrorPage(status){
let module = ‘common’;
if(think.mode !== think.mode_module){
module = this.config('default_module');
}
let file = ~${module}/error/${status}.html”;
let options = this.config('tpl');
options = think.extend({}, options, {type: 'ejs'});
return this.display(file, options);
}
J**
* Bad Request
* @return {Promise} []
*/
_400Action(){
return this.displayErrorPage(400);
}
/**
* Forbidden
* @return {Promise} []
*/
_403Action(){
return this.displayErrorPage(403);
}
/**
* Not Found
* @return {Promise} [1
*/
_404Action(){
return this.displayErrorPage(404);
}
/**
* Internal Server Error
* @return {Promise} [1]
*/
_5@0Action(){
return this.displayErrorPage(500);
}
/**

* Service Unavailable

* @return {Promise} [1]
*/
_503Action(){
return this.displayErrorPage(503);
}

The path of the corresponding error template page is view/common/error {Number}.html .
Error Type
System default supported error types are 400 , 403 , 404 , 500 and 503 .

400

Error request, like maliciously construct some illegal data access, url accessed is illegal and so on.

403

The current access has no permission.

404

The requested url is not found.

500
System internal happended error, which leads to the current request is unavailable.
503

Service is unavailable until it is recovered.

Extend Error Type

You can extend error type in your project depending on the practical requirement. such as adding the specific 600 error, and you can do as the following steps.

1. add _600Action

Add the following codes into src/common/controller/error.js file in the appropriate place.

_600Action
return this.displayErrorPage (600

2. Add Error Page

Add the file view/common/error 600.html , and write the corresponding error information into it.

3. Show Error Page

After added the error, you need to call it correspondingly in order to show it for users. It can be achieved by think.statusAction method. eg.

export default class extends think.controller.base
indexAction
if(someError
return think.statusAction(60@, this.http); //show 600 error, need to pass http object

Modify Error Page Style

JavaScript

JavaScript

In order to modify the error page style, you just need to modify the corresponding template file. Eg. edit the template file view/common/error 404.html to modify 404 error

page style.
Error Message

EPERM

Operation Not Permitted

An attempt was made to perform an operation that requires appropriate privileges.
ENOENT

No Such File Or Directory

Commonly raised by fs operations; a component of the specified pathname does not exist — no entity (file or directory) could be found by the given path.

EACCES

Permission Denied

An attempt was made to access a file in a way forbidden by its file access permissions.

EEXIST

File Exists

An existing file was the target of an operation that required that the target not exist.

ENOTDIR

Not a directory

A component of the given pathname existed, but was not a directory as expected. Commonly raised by fs.readdir.

EISDIR

Is a directory #####

An operation expected a file, but the given pathname was a directory.
EMFILE

Too many open files in system #####
Maximum number of file descriptors allowable on the system has been reached, and requests for another descriptor cannot be fulfilled until at least one has been closed.

Commonly encountered when opening many files at once in parallel, especially on systems (in particular, OS X) where there is a low file descriptor limit for processes. To remedy a
low limit, run ulimit -n 2048 in the same sh that will run the Node.js process.

EPIPE

Broken pipe

A write on a pipe, socket, or FIFO for which there is no process to read the data. Commonly encountered at the net and http layers, indicative that the remote side of the stream
being written to has been closed.

EADDRINUSE

Address already in use

An attempt to bind a server (net, http, or https) to a local address failed due to another server on the local system already occupying that address.
ECONNRESET

Connection reset by peer #####

A connection was forcibly closed by a peer. This normally results from a loss of the connection on the remote socket due to a timeout or reboot. Commonly encountered via the http
and net modules.

ECONNREFUSED

Connection refused #####

No connection could be made because the target machine actively refused it. This usually results from trying to connect to a service that is inactive on the foreign host.
ENOTEMPTY

Directory not empty

A directory with entries was the target of an operation that requires an empty directory — usually fs.unlink.
ETIMEDOUT

Operation timed out

A connect or send request failed because the connected party did not properly respond after a period of time. Usually encountered by http or net — often a sign that a connected
socket was not .end()’d appropriately.

Internationalization

Get Language

Use the method http.lang to getthe language of current user from cookie or header. eg.

JavaScript
let lang = http.lang

If you want to support getting the user selected language from cookie, you need to set the language name in the cookie. You can modify it in the config file

src/common/config/locale.js . €g.

JavaScript
export default {

cookie_name: 'think_locale', // the cookie name to store language

default: 'en' // default language

Use the method this.lang to getthe corresponding language directly in Controller.

Parse the Language from URL

In some cases, the language is parsed from the URL. eg. the url of current page is https://www.thinkjs.org/zh-cn/doc/2.0/i18n.html , which contains the language

zh-cn .
In this case, you need to use middleware to parse the language in your project. eg.

JavaScript
think.middleware('get_lang', http => {

let supportLangs = think.config('locale.support');
let lang = http.pathname.split('/')[@]; // get the language from URL

if(supportLangs.indexOf(lang) > -1){
http.pathname = http.pathname.substr(lang.length + 1)
Jelse{
lang = http.lang(); // get the language from cookie or header
-4
lang = http.config('locale.default'); //default supported language

if(supportLangs.index0Of(lang) =

-

}
http.lang(lang, true); //set the language, and allow to add language directory into the template path

s

After parsing the language from URL, you could use method http.lang to setthe language. And later, you can directly use http.lang to getthe language in Controller.
After defining middleware get lang , add it into the corresponding hook. eg.

JavaScript
export default {

route_parse: ['prepend', 'get_lang'], //add get_lang prepend into route_parse hook

Language Variable Config

Projects that support international need to config the different variable values in different languages. The config file is located in src/common/config/locale/[lang].js ,
format is as follows.

JavaScript
// src/common/config/locale/zh-cn.js

export default {
'title-home': 'ThinkJS Official Website - A Node.js MVC Framework Support All Of ES6/7 Features',
'title-changelog': 'Update logs - ThinkJS Official Website',

JavaScript
// src/common/config/locale/en.js

export default {
'title-home': 'ThinkJS - A Node.js MVC Framework Support All Of ES6/7 Features',
'title-changelog': 'Changelog - Think3JS'

-

Get the Language Variable

After config the language variable, we can get the value of current language by http.locale method. eg.

JavaScript
let homeTitle = http.locale('title-home");

If in Controller, we can get it directly by this.locale method. eg.

JavaScript
export default class extends think.controller.base {

indexAction(){
let homeTitle = this.locale('title-home");

-

Use the Language Variable in Template

In template, use the function _ to get the value of corresponding language. The following is ejs template as an example.

Markup
%- _('title-home') %

Set the Template Language Path

In some projects, we need to customize different templates depending on the different languages. By this time, it is appropriate that adding a layer of language directory to the
template path. eg. view/zh-cn/home/index index.html , adds a layer of language directory zh-cn to the path.

Use the method http.lang to setlanguage and add a layer of language directory in the template path. eg.

JavaScript
http.lang(lang, true // true indicates that you can add a layer of language directory in the template path

In Controller, use the method this.lang to set. eg.

JavaScript
export default class extends think.controller.base

indexAction
let lang = getFromUrl
this.lang(lang, true

Path Const

System provides many consts for project, and you can use them to access corresponding files conveniently.

think.ROOT_PATH

The root of project.

think. RESOURCE_PATH

The root of static resources, pathis think.ROOT PATH + /www/ .

think. APP_PATH

The directory of APP code, pathis think.ROOT PATH + /app/ .

think. THINK_PATH

The root directory of ThinkdS framework.

think. THINKLIBPATH

ThinkdS framework 1ib directory.

think.getPath(module, type)

For the model,controller,view directory and so on, because each module has these directories, so we can't give a fixed path value. You can get path value of module by
think.getPath

JavaScript
let pathl = think.getPath('common', 'model’ //get the directory of common module

let path2 = think.getPath('home', 'controller' //get the directory of home module

User-defined Path Consts
Besides the system properties and methods to get path, you can also define extra path consts in project.

Define in Entrance File

The entrance file of projectis src/index.js or src/production.js ,you can define path constin it. eg.

JavaScript
var thinkjs = require('thinkjs

var path = require('path’
var rootPath = path.dirname(__dirname
var instance = new thinkjs
APP_PATH: rootPath + '/app'
ROOT_PATH: rootPath
RESOURCE_PATH: __dirname

UPLOAD_PATH: __dirname + '/upload', // define the directory of file uploading

env: 'development'

instance.run

Define in Startup File
The files defined in src/common/bootstrap will be loaded automatically, so you can also define path const in this file. eg.

JavaScript
// src/common/bootstrap/common.js

think.UPLOAD_PATH = think.RESOURCE_PATH + '/upload'; // define the directory of file uploading

REST APIs

In projects, we often need to provide APIs for third party to call. Acommon API design specification is using REST API, which uses HTTP request type to identify resource
operation.

e GET /ticket # get ticket list

e GET /ticket/12 # view the specific ticket
e POST /ticket # new a ticket

e PUT /ticket/12 # update ticket 12

e DELETE /ticket/12 # delete ticket 12

ThinkJS provides a very convenient way to create REST API. After created, it can response REST API process without writing any code, and it can also response additional
demand by customization.

Create REST APIs

Use thinkjs controller [name] --rest tocreate REST API. eg.

JavaScript
thinkjs controller home/ticket --rest

The above command means that a Rest Controller named ticket is createdin home module. And this Controller is used to handle the request for resource ticket .

Process REST API Requests

After Rest Controller created, you can complete REST API process without writing any code. Resource name and data table name is one-to-one. eg. resource name is ticket ,
then the data table name is data-table-prefix + ticket .

Request Type
REST API gets the current request type from HTTP METHOD by default. eg.the current request type is DELETE , which means to delete the resource.

If some clients do not support sending DELETE request, you can set the property method to receive request type. eg.

JavaScript
export default class extends think.controller.rest

init(http
super.init(http
this._method = '_method'; //specify to get request type from _method in GET params

Field Filter

By default, all fields of resource are all returned when accessing it. Sometimes we need to hide part of fields, and we can complete such operations in magic method _ before .

JavaScript
export default class extends think.controller.rest

__before

this.modelInstance.fieldReverse('password,score’ //hide password and score fields

Authority Management

Some REST APIs require authentication. Only after passing the validation can it obtain the corresponding information. The validation can be carried out in the magic method

_ before
JavaScript
export default class extends think.controller.rest
* __before
let auth = yield this.checkAuth
if(lauth
return this.fail('no permissions' // return directly when no permission

More Customization

See AP| -> controller.rest for more customization ways.

Crontab

Online projects often need to be timed to execute certain function. By this time, you can use crontab. ThinkJS supports command line calls, combined with the system’s crontab
function, let you perfectly achieve this type of task.

Command Line Execution

Besides supporting URL access, ThinkJS also supports command line calls. The usage is as follows.

Bash
node www/production.js home/index/index

The above command means to execute indexAction of index Controllerin home module.

Carry Params

If you need to add some params, just put the corresponding params at the end of the line:

Bash
node www/production.js home/index/index?name=thinkjs

In Action, you can use method this.get togetparam name .

Modify Request Method

In command line executation, the default request type is GET. If you wand to modify it to use other type, you can do it this way:

Bash
node www/production.js url=home/index/index&method=post

Thus, the request type is changed to post. But in this way, the value of params in url can not includ "&" anymore (but you can use "/" to specify params, such as
node www/production.js url=home/index/index/foo/barsmethod=post).
Besides modifying request type, you can also modify the following params.

e host modify the request host, default is 127.0.0.1
e ip modify request ip, default is 127.0.0.1

Modify Header

Sometimes, if you want to modify more headers, you can pass a complete json. eg.

Bash
node www/production.js {"url":"/index/index","ip":"127.0.0.1","method":"POST", "headers":{"xxx":"yyyy"

Forbid URL Access

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_controller_rest.html

By default, you can access Action that is executed in command line by URL. If forbid URL to access to the Action, you can use think.cli to judge. eg.

export default class extends think.controller.base
indexAction
// forbid URL access to the Action
if(!think.cli

this.fail('only invoked in cli mode'

Executable Script

You can create a simple executable script to call command line to execute. eg.

cd project_path
node www/production.js home/index/index

This would create the directory crontab in the project, and put the above executable script as a file in this directory.

Timed Execution

Using system crontab can do timed executaion. Use command crontab -e to edit crontab. eg.

@ */1 * * * /bin/sh project_path/crontab/a.sh # execute once per 1 hour

Use node-crontab Module to Execute Crontab

Besides combining crontab with command line, you can also use node-crontab module to execute crontab. eg.

import crontab from 'node-crontab’

// execute once per 1 hour

let jobId = crontab.scheduleJob('@ */1 * * *! =>
think.http('/home/image/spider', true); //visit /home/image/spier

Put the above code file in direcotry src/common/bootstrap , S0 it can be executed automatically when server startup.

Online Deploy

Use pm2 to Manage Services

pm2 is a Node.js module used for professionally manage Node.js services, it is highly recommanded to use it online. It needs to be installed globally. eg.

sudo npm install -g pm2 . After installation, the pm2 commands will be available in command line.

When creating project, the config file pm2.json will be created in the project directory. And it’s content is roughly as follows.

"apps"
g™ aEie”
"script": "www/production.js"

"cwd": "/Users/welefen/Develop/git/thinkjs/demo"
"max_memory_restart": "1G"

"autorestart": true

"node_args"

"args"

"any"

Modify the cwd config value into the real project path, then use the following command to start/restart the service in the project directory.

pm2 startOrGracefulReload pm2.json

JavaScript

Bash

Bash

JavaScript

JavaScript

Bash

See hitp://pm2.keymetrics.io/docs/usage/application-declaration/ for the detailed config of pm2.

Use Nginx As a Reverse Proxy

A nginx config file named nginx.conf in the project directory will be created when creating project, which content is roughly as follows.

nginx
server

listen 80

server_name localhost

root /Users/welefen/Develop/git/thinkjs/demo/www
set 8360

index index.js index.html index.htm
(- ifd /index.html
rewrite (.*) $1/index.html break

if (!-f

rewrite *) /index.js

location = /index.js
proxy_http_version 1.1
proxy_set_header Connection ""
proxy_set_header X-Real-IP
proxy_set_header X-Forwarded-For
proxy_set_header Host
proxy_set_header X-NginX-Proxy true
proxy_set_header Upgrade
proxy_set_header Connection "upgrade"
proxy_pass http://127.0.0.1

proxy_redirect off
location = /production.js

deny all

location = /testing.js

deny all
location ~ /static/

etag on

expires max

Modify the localhost in server name localhost into the corresponding domain name. Modify the 8360 in set $node port 8360 into the one your are using.

After the modification is complete, copy the config file to the config file directory of nginx, then reload the config by the command nginx -s reload . So you can access the
application through the domain name.

It is recommended to open the config proxy on online, so that you can forbid to access directly by IP + port. Modify the config file src/common/config/env/production.ijs ,
eg.

JavaScript
export default

proxy_on: true

The Config of Closing the Static Resource Process

To facilitate the development, ThinkJS supports to process the static resource request. But when code is deployed online, it uses nginx to process the static resource request. By
this time, you can close the function of process static resource request to improve performance.

Add the following configuration in the config file src/common/config/env/production.js .

JavaScript
export default

resource_on: false

Use Cluster
Enable cluster function online could make the good use of multicore CPU to improve the performance and concurrent processing capability.

You can add the following configuration in the config file src/common/config/env/production.js .

http://pm2.keymetrics.io/docs/usage/application-declaration/

export default

cluster_on: true

Developing Plugins

ThinkdJS 2.0 supports two kinds of plugins: Middleware and Adapter.

Creating Plugins

Run the following command to create a plugin, and the plugin name begin with think- is suggested:

thinkjs plugin think-xxx

After runing, the think-xxx directory will be created, and it may includes the following content:

create : think-xxx/

create : think-xxx/src

create : think-xxx/src/index.js
create : think-xxx/test

create : think-xxx/test/index.js
create : think-xxx/.eslintrc
create : think-xxx/.npmignore
create : think-xxx/.travis.yml
create : think-xxx/package.json
create : think-xxx/README.md
enter path:

$ cd think-xxx/

install dependencies:

$ npm install

watch compile:

$ npm run watch-compile

run test:

$ npm run test-cov

Directory Structure

e src/ place the source code, using ES6/7 features

e test/ forunittesting
e .eslintrc configuration file eslint needed

e .npmignore files to ignore when npm launching

e .travis.yml configuration file for travis continuous integration

e package.json npm configuration file

e README.md ReadMe

Installing Dependencies

npm install --verbose

Developing

The code file is src/index.js , the generated file by default only contain a basic class, has not inherited any other class yet.
If it is Middleware, you may want to inherit think.middleware.base , if itis Adapter, you may want to inherit think.adapter.base .

Before developing, run npm run watch-compile to make the edited files be compiled in real time.

Unit Testing

Unit Testing code should be written in test/index. js , the test framework is mocha, and run the following command to view the unit testing result:

npm run test-cov

JavaScript

About README
After developing and testing, please write the notes in the README.md.
Publishing

Run npm publish to publish the plugin into the npm repository (you may be asked to create account and password if it is your very first publish).

Then, you can inform ThinkJS team. After confirmed, your plugins will be added into the offical plugin list and you can get the gift.

Recommended Modules

Network Request

* superagent
o request

Log
e logdjs
Date Processing

¢ moment

Code Transform
e iconv-lite

Image Processing
e gm

Framework
o thinkjs
* express

e koa
e sails

Debug
® node-inspector

Unit Testing

e mocha
e istanbul
e muk

Service Management
e pm2

Mailing
e nodemailer

Timed Task

e node-crontab

More Features

How Encapsulating callback to Promise

Many interfaces Node.js provided are in callback style, and many third party interfaces also do the same. The interfaces provided by ThinkJS are in Promise style instead. So you
need encapsulating interfaces in callback style to the ones in Promise style.

Using ThinkJS provided think.promisify method can quickly encapsulate interface as Promise, more detail please see here.

Tasks Queue

Asynchronous /O is one of the main advantages of Node.js, it make parallel processing very easy, for example we can parallelly process multiple files. But OS generally limit the

number of opened files, otherwise will result in errors.

In this case, we can resort to tasks queue, and ThinkJS also provide the think.parallelLimit method to help us to handle this. More detail please see here.

API

think

think is a global object that contains lots of useful methods and functions which can use anywhere of your application without require .

Properties

think.startTime

The start time of service, a unix timestamp.

think.env
The current environment of application, it may be one of the three possable values, you can set it when application start:

e development The development environment, application will automatically update itself with modified files.
e testing The testing environment.
e production The production environment, when application deploy online.

think.dirname

The name of project directory, you can set it when application start, the default value is:

think.dirname =
config: 'config', // The config file directory
controller: 'controller', // Directory of controller
model: ‘'model', // Directory of model
adapter: 'adapter', // Directory of adapter
logic: 'logic', // Directory of logic
service: ‘'service', // Directory of service
view: ‘'view', // Directory of view
middleware: 'middleware', // Directory of middleware
runtime: ‘runtime', // Directory of runtime
common: 'common', // Directory of common functions
bootstrap: ‘'bootstrap', // the start directory of application
locale: ‘'locale' // Directory of locale

think.port

The port of application runs, which can assign before application start, if assigned to some value, application will ignore the port value in the config file.

think.cli

JavaScript

Whether application is run under command line mode, false by default. if it is under command line mode, this variable return command arguments. You start command line mode

by run:

node www/index.js /home/index/test

think.lang
The current language of system, it read from the environment, which maybe empty in windows system.
think.mode

The current mode of application, framework support three mode in project:

e think.mode mini single module mode, all of project is one module.

e think.mode normal multiple modules mode, directory of project is separated to Controller, View, Logic and some other modules.

http://127.0.0.1:7777/en/doc/2.0/api_think.html#toc-c09
http://127.0.0.1:7777/en/doc/2.0/api_think.html#toc-bb7

e think.mode module multiple modules mode, but more stringent separate project with modules than normal mode.

think.version

The current version of ThinkJS.

think.module

The list of modules of project, if current mode is mode_mini , this variable is an empty array.

think. THINK_PATH

The path of ThinkdS code.

think. THINKLIBPATH

The path where 1ib/ of ThinkJS is.

think. ROOT_PATH

The root path of project, which is defined in www/index. js

think.APP_PATH

The path of app directory, which is defined in www/index.js

think. RESOURCE_PATH

The path of static resource directory, which is defined in www/index. js
Methods

think.Class(methods, clean)

Create a class dynamically, which inherit from think.base by default. you can use class to create class in ES6 if project is using ES6.

JavaScript
// inherit from think.base

var Clsl = think.Class
getName: function

Did Not Inherit think.base

JavaScript
var Cls2 = think.Class

getName: function

true

Inherit Other classes

JavaScript
// inherit from Cls2

var Cls3 = think.Class(Cls2
init: function(name

this.name = name

getName: function

Instantiate a Class
JavaScript

// instantiate a class which will call “init’ function automatically

var instance = new Cls3('thinkjs

think.extend(target, source1, source2, ...)

e target {Object}directory object
e sourcel {Mixed}source object
e return {Object}directory object

It will copy methods or functions from source1, source2 and some other object to target object, it is similartothe $.extend in jouery .
Deep copy by default, you can assign the first arugmentto false if you want shallow copy.
JavaScript
think.extend name: 'foo’ value: 'bar’

// returns

name: 'foo', value: 'bar’

think.isBoolean(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is Boolean type or not.
JavaScript
think.isBoolean(true); //true

think.isBoolean(false); //true
think.isBoolean('string’ //false

think.isNumber(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is Number type or not.
JavaScript

think.isNumber(1); //true
think.isNumber(1.21); //true

think.isObject(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is object type or not.
JavaScript
think.isObject //true

think.isObject({name: "welefen" //true
think.isObject(new Buffer('welefen’ //false

think.isString(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is string type or not.
JavaScript

think.isString("xxx"); // true

think.isString(new String("xxx" //true

think.isFunction(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is function type or not.

JavaScript
think.isFunction(function //true

think.isFunction(new Function("" //true

think.isDate(obj)

e obj {Mixed} object which need to check

e return {Boolean}

Check whether this object is date type or not.

think.isDate(new Date //true

think.isRegExp(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is regular expression or not.

think.isRegExp //true
think.isRegExp(new RegExp("/\\w+/" //true
think.isError(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether whether this object is error type or not.

think.isError(new Error("xxx" //true

think.isEmpty(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is empty or not.

// check is empty or not

think.isEmpty //true
think.isEmpty //true
think.isEmpty("" //true

think.isEmpty(@); //true
think.isEmpty(null); //true
think.isEmpty(undefined //true
think.isEmpty(false); //true

think.isArray(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is array or not.

think.isArray //true
think.isArray([1, 2 //true
think.isArray(new Array(10 //true

think.isIP4(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is IP4 or not.

think.isIP4("10.0.0.1" //true
think.isIP4("192.168.1.1" //true

think.isIP6(obj)

e obj {Mixed} object which need to check
e return {Boolean}

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

Check whether this object is IP6 or not.

think.isIP6("2031:0000:130f:0000:0000:09c0:876a:130b"
think.isIP6("2031:0000:130f::09c0:876a:130b" //true

think.isIP(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is IP or not.

think.isIP("10.0.0.1"); //true
think.isIP("192.168.1.1"); //true

think.isIP("2031:0000:130f:0000:0000:09c0:876a:130b"

think.isFile(file)

e file {Mixed} object which need to check
e return {Boolean}

Check whether this object is IP or not, if file did’t exist, return false.

think.isFile("/home/welefen/a.txt" //true
think.isFile("/home/welefen/dirname" //false

think.isDir(dir)

e dir {Mixed} the path to check
e return {Boolean}

Check whether this path is directory or not. if not, return false.

think.isDir("/home/welefen/dirname" //true

think.isBuffer(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is buffer object or not.

think.isBuffer(new Buffer(20 //true

think.isNumberString(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is string type of number or not.

think.isNumberString(1); //true
think.isNumberString("1" //true
think.isNumberString("1.23"); //true

think.isPromise(obj)

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is promise object or not.

think.isPromise(new Promise(function //true

think.isPromise(getPromise //true

think.isHttp(obj)

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

e obj {Mixed} object which need to check
e return {Boolean}

Check whether this object is http object or not.

JavaScript
think.isHttp(http); // true
think.isWritable(path)
e path {String} the path of directory or file
e return {Boolean}
Check whether this file or directory can write or not. if not, return false.
think.isPrevent(obj)
e obj {Mixed} object which need to check
e return {Boolean}
Check whether this object is prevent type of promise or not, through think.prevent() will generate this type of promise.
think.mkdir(p, mode)
e p {String} the name of directory
e mode {Number}the permission of directory , 0777 by default.
Function will create directory recursively, if directory is exist. this function will modify the permission of the directory.
JavaScript

// if /home/welefen/a/b/ didn't exist
think.mkdir("/home/welefen/a/b"

think.mkdir("home/welefne/a/b/c/d/e" // create directory recursively

think.rmdir(p, reserve)

e p {String} the path of directory to delete.
e reserve {Boolean}whether to keep this directory or not, if value is true, this function will only delete subdirectory.
e return {Promise}

Function will delete directory recursively, if directory is not exist, this function will return directly. or this function will return a promise object, then you can use its then to operate.
JavaScript
function rmTmp

think.rmdir('/foo/bar").then(function

// some operation

if use Generator Function ,youcanuse yield
JavaScript
function * rmTmp
yield think.rmdir('/foo/bar

// some operation

think.chmod(p, mode)

e p {String} the path of directory
e mode {Number} the permission of directory , 0777 by default.

Change the permission of directory, if directory didn'’t exist, function will return null directly.

JavaScript
think.chmod("/home/welefen/a", 0777

think.md5(str)

e str {String} the string which need to generate md5.
e return {String} md5 value

Generate md>5 value.

think.md5(' thinkjs'
// returns
7821eb623e@b1138a47db6a88c3f56bc

think.defer()

e return {Object} Deferred object

JavaScript

Create a Deferred object, which is a shortcut of Promise . Sometimes have to use this function with some operation like setTimeout , event ,though this is not a

recommend way.

// the way using Deferred
var fn = function
var deferred = think.defer
process.nextTick(function
if(xxx
deferred.resolve(data
else

deferred.reject(err

return deferred.promise

The way using Deferred is much cleaner than the way using new Promise .

// the way using new Promise
var fn = function
return new Promise(function(resolve, reject
process.nextTick(function
if(xxx
resolve(data
else

reject(err

JavaScript

JavaScript

Notice: asynchronous callback operations DONT use the Deferred way, instead of encapsulate callback to Promise with using think.promisify .

think.promisify(fn, receiver)

e £n {Function} function which to be promisify
e receiver {Object}whereis this pointto.

Encapsulate asynchronous functions to Promise quickly, the last argument of asynchronous functions must be a callback, which has an error handler of first argument.

var fs = require('fs'

// function which to get file content
var getContent = function(filePath
// encapsulate readFile to Promise
var readFilePromise = think.promisify(fs.readFile, fs
// read file content
return readFilePromise(filePath, 'utf8'

// get file content
getContent('/foo/bar/file.txt").then(function(content
console.log(content
catch(function(err

console.error(err.stack

think.reject(err)

o err {Error} Error object
e return {Promise} reject promise

Return a reject promise, and the difference between this and Promise.reject

JavaScript

is this function will print error message automaticallly, which can avoid calling catch function to

print error message by hand.
JavaScript
// use Promise.reject

var fn = function

return Promise.reject(new Error('xxx’

//but need to print error massage with “catch® by hand.
fn catch(function(err

console.error(err.stack

JavaScript
// use think.reject

var fn = function

return think.reject(new Error("xxx

// will print formatted error message automactically.
fn

think.co

The alias of modules is co

think.lookClass(name, type, module, base)

e name {String}class name

e type {String}type (controller | model | logic ...)

e module {String} module name

e base {String}find base class if cannot find module

Find class with type or name of class. if cannot find module, program will find module in common module, if still cannot find module, program will the baseclass.

JavaScript
// find user controller in home module

// if cannot find, will find in common module

// if still cannot find, will find in base controller
think.lookClass("user", "controller", "home"

// find user controller in admin module
think.lookClass("admin/user", "controller"

think.getPath(module, type, prefix)

e module {String} module name
e type {String}type, like controller, model, logic
e prefix {String} prefix

Get the path of module based on current project mode.

JavaScript
let path = think.getPath('home', 'controller

If root path of current projectis /foo/bar , then the return path is:

e project modeis think.mode mini thenthe pathis /foo/bar/app/controller
e project modeis think.mode _normal thenthe pathis /foo/bar/app/controller/home
e project mode is think.mode_module thenthe pathis /foo/bar/app/home/controller

think.require(name, flag)

e name {String}
e flag {Boolean}

think.safeRequire(file)

e file {String}the file to load
To load a file safely, if file didn’t exist, function will return null, and print error message at the same time.
think.prevent()

return a special reject promise , this promise can stop follow-up work, and not report error.

https://github.com/tj/co

think.log(msg, type, showTime)

e msg {String | Error} message
e type {String}type
e showTime {Number | Boolean} whether show time or not.

Print logs, which contains time, type and some other information.

think.log('WebSocket Status: closed', 'THINK'
//writes '[2015-09-23 17:43:00] [THINK] WebSocket Status: closed'

Print error message

think.log(new Error('error’ 'ERROR
//writes '[2015-09-23 17:50:17] [Error] Error: error

Print execute time

think.log('/static/module/jquery/1.9.1/jquery.js', 'HTTP', startTime
//writes '[2015-09-23 17:52:13] [HTTP] /static/module/jquery/1.9.1/jquery.js 10ms"

Don’t show log time

think.log('/static/module/jquery/1.9.1/jquery.js', 'HTTP', null
//writes '[HTTP] /static/module/jquery/1.9.1/jquery.js

Log by custom #####

think.log(function(colors
return colors.yellow('[WARNING]') + ' test'

//writes '[WARNING] test'

By the way, colors is amodule named colors in npm modules.

think.config(name, value, data)

e name {String}config name
e value {Mixed}config value
e data {Object} config object

Read or setup config, it could be the global config object.

// get the config

let value = think.config('name’

// get config in admin module

let value = think.config('name', undefined, 'admin’
// write into config

think.config('name', 'value'

think.getModuleConfig(module)

e module {String} module name
e return {Object}

Get all config of module, which contains config of module, comon module and the framework default config.

// get all config of admin module
let configs = think.getModuleConfig('admin'

think.hook()
Register, get and execute hook, what can be appended or modified if need.

Get event’s middleware list

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

https://github.com/Marak/colors.js

think.hook('view_template');
//returns

['locate_template']

Setup hook

// replace ex-hook

think.hook('view_template', ['locate_templatel']);

// insert before old one
think.hook('view_template', ['locate_templatel'],

// insert after old one

think.hook('view_template', ['locate_templatel'],

Delete hook

think.hook('view_template', null);

Execute hook

'prepend’);

'append’) ;

let result = think.hook('view_template', http, data);

//result is a promise

think.middleware()
Register, create, get and execute middleware.
Create middleware

// analyzing XML example

var ParseXML = think.middleware({

run: function(){
var http = this.http;

var payload = http.payload; // payload is the upload post data
var data = xmlParse.parse(payload); // use a xml parser, this xmlParse here is

http._post = data; // assign parsed data to http._post, then can get data from http._post('xxx")

1)

Using ES6 to create middleware

let Clsl = class extends think.middleware.base {

run(){
let http = this.http;

Register middleware

middleware can be sample function, or complex class.

// register a functional middleware

think.middleware('parse_xml', http => {

1

// redister a class middleware
// it will call run automatically
let Cls = think.middleware({
run: function(){
let http = this.http;

}
s

think.middleware('parse_xml', Cls);

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

Get middleware

let middleware = think.middleware('parse_xml

Execute middleware

let result = think.middleware('parse_xml', http
//result is a promise

think.adapter()

Create, register, get and execute adapter.
Create adapter

// create an adapter

var Cls = think.adapter

// create a session adapter, which instance of session base class

var Cls = think.adapter('session', 'base’

// create a session adapter in ES6

let Cls = class extends think.adapter.session

Register adapter

// register some type of session adapter

think.adapter('session’, 'xxx', Cls

Get adapter

// get file type of session adapter
let Cls = think.adapter('session', ‘file'

Execute adapter

let Adapter = think.adapter('session', 'file’
let instance = new Adapter(options

think.gc(instance)

e instance {Object}instance of object

Register a instance object to garbage collection queue, the instance object must have gcType method and gc function.

Something like cache or session which have expiration time, when after expire need to clean up.framewokr offered some handlers to clean expired file.

let Cls = class extends think.adapter.cache
init(options
super.init(options
this.gcType = 'xFileCache’
think.gc(this

gc
// find expired content to clean.

think.http(req, res)

e reqg {Object} request object

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

e res {Object} response object
e return {Promise}

Base on request and response packed into http object, by the way, req and res could be other obecjt by custom.

// based on an url object packed into a http object, which is useful to command mode calling.

think.http('/index/test").then(http => {

})s

think.uuid(length)
e length {Number} the length of generate string, 32 by default
Generate a random string.
think.session(http)
e http {Object} http object
Generate a session, and write it to http object, if exist, return directly.
think.controller()
Create and execute a controller
Create controller

// create controller, instance of think.controller.base
let Cls = think.controller({

})
1)
// create controller, instance of think.controller.rest

let Cls = think.controller(‘rest', {

// create a controller by using ES6
let Clsl = class extends think.controller.base {

Instance of controller

// instance of user controller belong to home module

let instance = think.controller('user', http, 'home');

think.logic()
Create and execute logic
Create logic

// create logic, which instance of think.logic.base
let Cls = think.logic({

1

// create logic by using ES6
let Clsl = class extends think.logic.base {

Instance of logic

// instance of user logic which is belong to home

let instance = think.logic('user', http, 'home');

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

think.model()
Create or get model,
Create model

// Create a model
let model = think.model({
getList: function(){

}
1
// in ES6 , instance of think.model.base class directly

let model = class extends think.model.base {
getList(){

// create a model which instance of mongo model
let model = think.model('mongo", {
getList: function(){

}
IO H
// in ES6, instance of think.model.mongo class directly

let model = class extends think.model.mongo {
getList(){

get the instance of model

let configs = {
host: '127.0.0.1°',
name: 'user’

¥
// get user model which is belong to home module.

let instance = think.model('user', configs, 'home');

think.service()
Create or get service,
Create service ###i##

// Create a service class

let service = think.service({
)]

// in ES6 , instance of think.service.base class directly

let service = class extends think.service.base {

service base class based on think.base, so can use functions in think.base.

if don’t want to write serivce to class, so it’s not necessary to create by using this way.
get service

// get post service which belong to home module, passed a “{}
// if got service is a class, it will be instancing automatically
think.service('post', {}, "home');

think.cache(name, value, options)

e name {String}cache key

JavaScript

JavaScript

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_base.html

e value {Mixed}cache value
e options {Object} cache options
e return {Promise}return a Promise

Get, setup or delete cache, value is undefined means read cache, valueis null means delete cache.

if value assigned to Function means read cache but when cannot got a result, this function will be calling, then return the function return value which has been setup to cache.

// get cache
think.cache('name").then(data =>

// setup the type of cache, read cache from redis for example

think.cache('name’, undefined, {type: 'redis
// if cache userList is not exist, then query the database, assign return value to cache

think.cache('userList" =>)

return think.model('user').select
// setup cache
think.cache('name', ‘value'
// delete cache
think.cache('name’, null
think.locale(key, ...data)

e key {String}the key which need to get
e data {Array}arguments

Get the corresponding value based on language, the current language can get from think.lang , which can setup when system start.

think.locale('CONTROLLER_NOT_FOUND', 'test', '/index/test'
//returns
‘controller “test’ not found. url is " /index/test .’

think.validate()

Register, get or execute validation.
register validate function

// register the validate type is not_number
think.validate('not_number', value =>
return ! test(value

get validate function

let fn = think.validate('not_number

validate data

let result = think.validate
name
value: 'name’
required: true

not_number: true

pwd
value: 'xxx'
required: true
minLength: 6

// if result is isEmpty, it means result is expected.

if(think.isEmpty(result

think.await(key, callback)

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

e key {String}
e callback {Function}

Execute await, to avoid a long-running operation has been called many times,

For example, one user request that get data from a remote interface can not be processed in time will result in a large number of similar requests, it’s a wasting of resources. So

these users can share a common request to the remote interface.

import superagent from 'superagent’

export default class extends think.controller.base

indexAction

let result = yield think.await('get_xxx_data’ =>1
let req = superagent.post('xxxx"
let fn = think.promisify(req.end, req

return fn

this.success(result

think.npm(pkg)
e pkg {String} module name

Load module, if module not exist, module will been install automatically.

// if mysql module exist, project will install it with npm.
let mysql = think.npm('mysql

// load a specify version of mysql

let mysql = think.npm('mysql@2.0.0"

think.error(err, addon)

e err {Error| Promise | String} error information
e addon {Error | String} addon error meesage.

Formatting error message, make some system error message completely.

let error = think.error(new Error('xxx'

Catch promise error message

let promise = Project.reject(new Error('xxx'
promise = think.error(promise

Add catch for promise automatically, to catch error message.

think.statusAction(status, http, log)

e status {Number} status number
e http {Object} contained http object
e log {Boolean} whether log error message or not

When system is abnormal like system error, page not found, permission denied, then render the right page.

while creating project, it will generate file src/common/controller/error.js incommon module, which is specially use for handle error state.

Default support types of error are: 400 , 403 , 404 , 500, 503 .

According to the project’s need, it can be modified like error page or extension.

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript
export default class extends think.controller.base

indexAction
if(xxxx
let error = new Error('not found'
// assign error information to http object, to render with template
this.http.error = error
return think.statusAction(404, this.http

Class

think.base

think.base: More information read here

think.http.base

think.http.base: More information read here

think.base

think.base is the base class, all classes will inherit it, it supports some basic functions.

Inherit Base Class with ES6:

JavaScript
export default class extends think.base
/**
* init method
* @return {} []
*/

init

Notice : while using ES6, don't write the constructor , instead puting some initial operations in the function init , this function will be called automatically when class

instancing, the effect is equivalent to use construtor .

Inherit Base Class Use Normal Way:

JavaScript
module.exports = think.Class(think.base
/**
* init method
* @return {} []
*/

init: function

init(...args)
e args {Array}

Initialization function, which can do some assign and other operations.

JavaScript
class a extends think.base
init(name, value
this.name = name

this.value = value

Notice : Different from version 1.x ,the init functionof 2.x did notreturna Promise , some common operations arein _ before magic functions.

__before()

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_base.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_http_base.html

Pre-magic function, you can put some common behavior here, such as check wheter user is login or not in controller.

export default class think.controller.base
yass
* pre-magic function
* @return {Promise} []
*/
* _ before
let userInfo = yield this.session('userInfo’
// if not login yet, it will jump to login page.
if(think.isEmpty(userInfo
return this.redirect('/logic’

this.assign('userInfo', userInfo

__after()

Post-magic function, it will execute after function executed.

filename()
e return {String}return the current class file’s name.

Get the current class file’s name, not contains detail of file path or file’s extension.

// suppose current class file path is /home/xxx/project/app/controller/user.js
class a extends think.base
test
var filename = this.filename

//returns 'user'

invoke(method, ...data)

e method {String}the function name to been invoked
e data {Array}arguments
e return {Promise}

To invoke a function, automatically invoke _ before and _ after no matter whether the function return pormise or not, this function will return Pormise .

This function supports */yield and async/await .

//use async/await
class Cls extends think.base
async getValue
let value = await this.getValue

return value

let instance = new Cls
instance.invoke('getValue').then(data =>

//use */yield
class Cls extends think.base
* getValue
let value = yield this.getValue

return value

let instance = new Cls
instance.invoke('getValue').then(data =>

think.http.base

JavaScript

JavaScript

JavaScript

JavaScript

The think.http.base class inherit from think.base, it is the base class that contains all of the operations related to http. Middleware, controller and view class are all inherit

from this class.
Inheritence with ES6:
export default class extends think.http.base
et
* initial function, will automatically invoked while instacing, didn't need constructor
* @return {}

*/
init

Inheritence With Normal Way

module.exports = think.Class(think.http.base
init: function

Property

http

Packaged http object, contained methods and function to be seen in AP -> htip.
Methods

config(name, value)

e name {String} config file
e value {Mixed} config value

Read or setup config, it is read config when value assigned to undefined , otherwise it is setup config.

This function can not only read system default config, but also read project config.

Notice :Don’t setup with request user’s information, it will be covered by other user.

export default class extends think.controller.base
indexAction
// get config value

let value = this.config('name"’

action(controller, action)

e controller {Object!| String} controller instance
e action {String}action name
e return {Promise}

Invoke action in controller, return a Promise, invoke ~ before and _ after automcatically.

If controller is a string, it will automactically to find this controller.

// invoke action of current module's controller
export default class extends think.controller.base
* indexAction
// invoke defail function in user controller

let value = yield this.action('user’, ‘'detail

JavaScript

JavaScript

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_base.html
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_http.html

JavaScript
// invoke action in cross module's controller

export default class extends think.controller.base
* indexAction
// invoke detail function of user controller in admin module

let value = yield this.action('admin/user', 'detail'’

cache(name, value, options)

e name {String}cache name
e value {Mixed | Function} cache value
e options {Object} cache options, more informtion in cache config.

Read or set cache, it is read cache when assign value to undefined , otherwise, itis setup cache. default type is file .

JavaScript
export default class extends think.controller.base

* indexAction
// get cache

let value = yield this.cache('name’

When value is function, it means read cache, if cache’s value didn’t exist, it will invoke this function, and assign the returning value to cache and return the value.lt is very useful
to avoid a trouble which judge the cache is exist when developing project and then to read cache and set cache in other place.

JavaScript
export default class extends think.controller.base
* indexAction
// setup cache, when cache didn't exist, it invoke function automatically, and set cache at the same time
let value = yield this.cache('name’ =>
return this.model('user').select
Setup cache and modify the type:
JavaScript
export default class extends think.controller.base
* indexAction
// setup cache, cache type is redis
yield this.cache('name', 'value'
type: 'redis’
hook(event, data)
e event {String}event name
e data {Mixed}argument
e return {Promise}
Execute hook event, a hook has some middleware, it will execute those middleware orderly.
Hook event can be assigned in src/common/config/hook. js , also it can be registered with think.hook.
JavaScript

export default class extends think.controller.base
* indexAction

let result = yield this.hook('parse_data’

model(name, options)

e name {String} model name
e options {Object} options, more detail seen in database config
e return {Object} model instance

Get the instance of model, which is instance of current module by default, it also can get instance of other module.

JavaScript
export default class extends think.controller.base {

indexAction(){
// get instance of user model in current module
let model = this.model('user');
// get instance of article model in admin module
let modell = this.model('admin/article');
// get instance of test model in current module, and it is sqlite database
let model2 = this.model('test', {
type: 'sqlite' // setup type of database to sqlite, more detail to see in database config
1

-

controller(name)

e name {String} controller name
e return {Object} controller instance

Get the instance of Controller, if cannot find Controller, it will report errors.

JavaScript
export default class extends think.controller.base {
indexAction(){
// get instance of user controller in current module
let controller = this.controller('user');
// get instance of user controller in admin module
let controllerl = this.controller('admin/user');
}
1
S
service(name)
e name {String} service name
e return {Class}
Get the service, it maybe return a class, or an object, so it will not instance automatically.
JavaScript
export default class extends think.controller.base {
indexAction(){
// get the service
let service = this.service('user');
// get instance of service
let instance = new service(...args):
// get user service in admin module
let servicel = this.service('admin/user"');
}
N
J
This http object is not the one in Node.js, it is a new object which packaged with request object and response object.
JavaScript

var http = require('http');
http.createServer(function (request, response) {
response.writeHead(200, {'Content-Type': 'text/plain'})

response.end('Hello World\n');
}).listen(8124);

As the above code shows, when Node.js create service, it will pass request and respone to callback. For the convenience of invoke, ThinkJS packaged these two objects into its
own http object, and offer some useful functions.

The http object will be passed to middleware, logic, controller and view.

Note : http object is an instance of EventEmitter, so you register event listeners to it.
Properties

http.req

System native request object.

http.res

System native response object.
http.startTime

A start time of request, itisa unix timestamp.
http.url

Url of urrent request.

http.version

Http version of current request.

http.method

Type of current request.

http.headers

Header informations of current request.
http.pathname

Pathname of current request, router depended on it’s value and will change it in some operations. so the return value of action maybe different from the initial value.
http.query

Query data of current request.

http.host

Host of current request, contain host port.
http.hostname

Host of current request, not contain host port.
http.payload

Payload data of current request, it has data only if the request is submit type.
http._payloadParsed

Means this payload of current request has parsed or not.
http._get

Store GET arguments.

http._post

Store POST arguments.

http._file

Store upload file data.

http._cookie

Store cookie data.

http.module

The module name of current request parsed.

http.controller

The controller name of current request parsed.

http.action

The action name of current request parsed.

Methods

http.config(name)

e name {String}config name
e return {Mixed} return config value

Get the argument of current request config.
http.referrer()

e return {String}referrer of request
Return the referrer of current request.
http.userAgent()

e return {String}userAgent of request
Return the userAgent of current request.
http.isGet()

e return {Boolean}

Return current request is GET request or not.
http.isPost()

e return {Boolean}

Return current request is POST request or not.
http.isAjax(method)

e method {String}type of request
e return {Boolean}

Return current request is Ajax request or not.

JavaScript
http.isAjax // judge request is ajax request or not
http.isAjax('GET' // judge request is ajax request and is GET type or not
http.isdsonp(name)
e name {String} callback parameter name, default is callback
e return {Boolean}
Return current request is jsonp requst or not.
JavaScript

//url is /index/test?callback=testxxx
http.isJsonp //true
http.isJsonp('cb’ //false

http.get(name, value)

e name {String} parameter name
e value {Mixed}parameter value

Get or set GET parameter, it can be used to set GET argument for somewhere can get it.

// url is /index/test?name=thinkjs
http.get('name’ // returns 'thinkjs
http.get('name', 'other value'
http.get('name’ // returns ‘other value'

http.post(name, value)

e name {String} parameter name
e value {Mixed} parameter value

Get or set POST parameter, it can be used to set POST argument for somewhere can get it.

http.post('email" // get the submited email

http.param(name)

e name {String} parameter name
e return {Mixed}

Get parameter value, firstly to get from POST, if return null, it will get the value from URL parameter.

http.file(hame)

e name {String}field name
e return {Object}

Get the uploaded file.

http.file('image"

//returns
fieldName: 'image', // the filed name in form
originalFilename: filename, // origin file name

path: filepath, // the temp path of store files

size: size // file size

http.header(name, value)

e name {String} header name
e value {String} header value

Get or set header information.

http.header('accept'); // get accept
http.header('X-NAME', 'thinkjs' // set header

http.expires(time)
e time {Number} expire time, unit is second.

Strange cache, set Cache-Control and Expries header inforamtion.

http.header(86400); // set expire time is one day.

http.status(status)

set status code, if header has sent, it cannot set status code.

http.status(400); // set status code to 400

http.ip()

Get user’s ip, it will been incorrect if user used proxy.

http.lang(lang, asViewPath)

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

e lang {String}the setup of language.

e asviewpPath {Boolean}whether add a directory layer for language template.

Get or set global language, it support more directory layer for language template.

Get language

let lang = http.lang

The order to get language is http. lang -> get from cookie -> get from header , if need to parse language from url, you can set http. lang with

http.lang(lang) after geturl.

set language

let lang = getFromUrl

http.lang(lang, true // set language, and set a directory layer for language template.

http.theme(theme)

Get or set theme, after setting, it will generate a lay for theme.

http.cookie(name, value)

e name {String}cookie name
e value {String} cookie value

Read or set cookie.

http.cookie('think_test'); // get cookie named think_test

http.cookie('name', 'value' // get cookie, invalid if header has sent.

http.session(name, value)

e name {String} session name
e value {Mixed}session value
e return {Promise}

Read, set and clean session.

Read Session

let value = yield http.session('userInfo’

set Session

yield http.session('userInfo', data

clean Session

yield http.session

http.redirect(url, status)

e url {String}the url will jump

e status {Number} status code, 301 or 302, default is 302.

Jump page.

http.redirect('/login’ // jump to login page.

http.type(contentType, encoding)

e contentType {String}contentType which need to modify

e encoding {String} encode to set

Read or set Content-Type.

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

http.type // get Content-Type
http.type('text/html’ // get Content-Type, it will add charset automatically
http.type('audio/mpeg', false // set Content-Type, not add charset

http.write(content, encoding)

e content {Mixed}the content to write
e encoding {String} charset

Write content, end request only invoke http.end.

http.end(content, encoding)

e content {Mixed}the content to write
e encoding {String} charset

Write content and stop current request.

http.success(data, message)

e data {Mixed}the content to write
e message {String} added message

Response a format normal data , always after operate success.

http.success({name: 'thinkjs"'

//writes
errno: @
errmsg

data
name: 'thinkjs’

Client can based on error is 0 or not to judge current request is success.

http.fail(errno, errmsg, data)

e errno {Number}error number
e errmsg {String} error message
e data {Mixed}extra data

Output an unusual formatted data, normally after operate failed.

Notice :field name errno and errmsg canbeen modified in config.

http.fail(100, 'fail’

//writes
errno: 100

errmsg: 'fail’
data: "'

In this way, client will get detail error number and error message, then show message according to the need.
Notice :filed name errno and errmsg can been modified in config.
http.json(data)
e data {Object}

Output data in json way, it will set Content-Type to application/json ,its configis json content type .

controller

The think.controller.base class inherit from think.http.base class, controllers in project need to inherit it.

Inheritence with ES6:

JavaScript

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_http_base.html

export default class extends think.controller.base

indexAction

Inheritence With Normal Way

module.exports = think.controller

indexAction

Property

controller.http

Passed htip object.
Methods

controller.ip()
e return {String}

Get user ip of current request, it is equal to http.ip .

export default class extends think.controller.base
indexAction

let ip = this.ip

controller.method()
e return {String}

Get type of current request, and convert to lowercase.

export default class extends think.controller.base
indexAction
let method = this.method //get or post ...

controller.isMethod(method)

e method {String} method
e return {Boolean}

Judge type of current request is named types.
controller.isGet()

e return {Boolean}
Judge is GET request or not.
controller.isPost()

e return {Boolean}
Judge is POST request.
controller.isAjax(method)

e method {String}
e return {Boolean}

JavaScript

JavaScript

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_http.html

Judge is Ajax request, if named method, then as same as the type of request.

export default class extends think.controller.base
indexAction
// is ajax and request type is POST
let isAjax = this.isAjax('post’

controller.isWebSocket()
e return {Boolean}

Whether is websocket request or not.

controller.isCli()
e return {Boolean}

Whether is run in command mode or not.

controller.isdsonp(callback)

e callback {String} callback name
e return {Boolean}

Whether is jsonp request.

controller.get(name)
e name {String} parameter name

Get parameter of GET.

export default class extends think.controller.base
indexAction
// get a parameter
let value = this.get('xxx"
// get all parameter
let values = this.get

controller.post(name)
e name {String} parameter name

Get parameter of POST data.

export default class extends think.controller.base
indexAction
// get a value of parameter
let value = this.post('xxx"
// get all parameter of POST
let values = this.post

controller.param(name)

e name {String} parameter name

Get parameter value, first to read from POST, if return null, then get from GET.

controller.file(name)

e name {String} field name of upload file

Get uploaded file, return value is a object, contains these method below:

JavaScript

JavaScript

JavaScript

JavaScript

fieldName: 'file', // field name

originalFilename: filename, // original file name

path: filepath, // path of temp store file, need to move this path when using, or exists until request ends.
size: 1000 // file size

If file not exist, this returning is an empty object {} .

controller.header(name, value)

e name {String} header name
e value {String} header value

Get or set header,

JavaScript
export default class extends think.controller.base
indexAction
let accept = this.header('accept' // get header
this.header('X-NAME', ‘thinks' // set header
controller.expires(time)
e time {Number} expires time, the unit is seconds
Strong cache, set cache-Control and Expires header information.
JavaScript
export default class extends think.controller.base
indexAction
this.expires (86400 // set expire time to one day.
controller.userAgent()
Get userAgent,
controller.referrer(onlyHost)
e referrer {Boolean}whether only need host
Get referrer,
controller.cookie(name, value, options)
e name {String} cookie name
e value {String} cookie value
e options {Object}
Get or set cookie,
JavaScript
export default class extends think.controller.base
indexAction
// get value of cookie
let value = this.cookie('think_name’
JavaScript

export default class extends think.controller.base
indexAction
// get value of cookie
this.cookie('think_name', value

timeout: 3600 * 24 * 7 // expires time is one week

controller.session(name, value)

e name {String}session name
e value {Mixed} session value
e return {Promise}

Read, set and clean session,
Read Session

export default class extends think.controller.base
* indexAction
// read session

let value = yield this.session('userInfo’

set Session

export default class extends think.controller.base
* indexAction
//set session

yield this.session('userInfo', data

Clean Session

export default class extends think.controller.base
* indexAction
//EBRERIAFH session

yield this.session

controller.lang(lang, asViewPath)

e lang {String}the setup of language

e asviewPath {Boolean}whether add a directory layer for language template.

Read or set language.

controller.locale(key)

e key {String}
Based on language to get the language version.
controller.redirect(url, statusCode)

e url {String}the url to jump
e statusCode {Number} status code, default is 302

Page jump.
controller.assign(name, value)

e name {String | Object} variable name
e value {Mixed} variable value

Assign variable into template.

JavaScript

JavaScript

JavaScript

export default class extends think.controller.base {
indexAction(){

// single assign

this.assign('title', 'thinkjs');

// multi-assign

this.assign({
name: ‘xxx',
desc: 'yyy'

1))

controller.fetch(templateFile)

e templateFile {String}tempate file path
e return {Promise}

Get the parsed template content.

Get directly ##i###

// suppose the file path is /foo/bar/app/home/controller/index.js

export default class extends think.controller.base {
* indexAction(){
// home/index_index.html
let content = yield this.fetch();

Change action #####

// suppose file path is /foo/bar/app/home/controller/index.js
export default class extends think.controller.base {
* indexAction(){
// home/index_detail.html
let content = yield this.fetch('detail');

Change controller and action #####

// suppose file path is /foo/bar/app/home/controller/index.js
export default class extends think.controller.base {
* indexAction(){
// home/user_detail.html
let content = yield this.fetch('user/detail’);

Change module, controller] action #####

// suppose file path is /foo/bar/app/home/controller/index.js
export default class extends think.controller.base {
* indexAction(){
// admin/user_detail.html
let content = yield this.fetch('admin/user/detail’);

Change file extension #####

// suppose file path is /foo/bar/app/home/controller/index.js
export default class extends think.controller.base {
* indexAction(){
// home/index_detail.xml
let content = yield this.fetch('detail.xml");

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

Get absoulte file path #####

// suppose file path is /foo/bar/app/home/controller/index.js
export default class extends think.controller.base

* indexAction
// /home/xxx/aaa/bbb/c.html

let content = yield this.fetch('/home/xxx/aaa/bbb/c.html’

controller.display(templateFile)

e templateFile {String}template file path

Output template content to browser side. strategy of finding template is the same as controller.fetch .

controller.jsonp(data)
e data {Mixed} content to output

Using the way of jsonp to output content, after getting callback’s name and security filter then output.

export default class extends think.controller.base
indexAction
this.jsonp({name: 'thinkjs
//writes

‘callback_fn_name({name: "thinkjs"})'

controller.json(data)
e data {Mixed} the output content
Json way to output.
controller.status(status)
e status {Number} status code, default is 404
Set status code.
controller.deny(status)
e status {String} status code, default is 403
Deny current request.
controller.write(data, encoding)

e data {mixed}the output content
e encoding {String} charset

Output content.
controller.end(data, encoding)

e data {mixed}the output content
e encoding {String} charset

After output content, end current request.
controller.type(type, charset)

e type {String} Content-Type
e charset {Boolean}wheher append charset or not

Set Content-Type,
controller.download(filePath, contentType, fileName)

e filepPath {String} specified path of download file

JavaScript

JavaScript

e content-Type {String} Content-Type
e fileName {String} error file name

Download file.

export default class extends think.controller.base
indexAction
let filePath = think.RESOUCE_PATH + '/a.txt'
// auto identify Content-Type, save file to a.txt
this.download(filePath

export default class extends think.controller.base
indexAction
let filePath = think.RESOUCE_PATH + '/a.log'
// auto identify Content-Type, save file to b.txt
this.download(filePath, 'b.txt'

export default class extends think.controller.base
indexAction
let filePath = think.RESOUCE_PATH + '/a.log'
// specify Content-Type to text/html, save file to b.txt
this.download(filePath, 'text/html', 'b.txt'

controller.success(data, message)

e data {Mixed}the output data
e message {String} appended message

Output an normal formatted data, often after operate success.

http.success({name: 'thinkjs

//writes

errno: @
errmsg
data
name: 'thinkjs"'

Client can based on error is 0 or not to judge current request is success.

controller.fail(errno, errmsg, data)

e errno {Number}error number
e errmsg {String} error message
e data {Mixed} extra data

Output an unusual formatted data, normally after operate failed.

Notice :field name errno and errmsg can been modified in config.

http.fail(1ee, 'fail’

//writes

errno: 100
errmsg: ‘fail’
data

In this way, client will get detail error number and error message, then show message according to the need.

Notice :filed name errno and errmsg canbeen modified in config.

controller.sendTime(name)

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

e name {String} header key

The execute time of send request, send with header.

rest controller

The think.controller.rest class inherit from think.controller.base, used for handle Rest API.

Inheritence with ES6:

JavaScript
export default class extends think.controller.rest

Inheritence With Normal Way

JavaScript
module.exports = think.controller('rest’

Properties

controller._isRest

Identify this controller is Rest api. ifin init function, it assignedto false , and this controller is not a Rest interface no more.

controller._method

The way to get method, by default read from http method, but some client don’t support send some request type like DELETE, PUT, so it can set to get from GET parameter.

JavaScript
export default class extends think.controller.rest

init(http
super.init(http
// set _method, means get _method field value from GET parameters
// if is null, it will get from http method
this._method = '_method’

controller.resource

The Resource name of current Rest
controller.id

Resource ID
controller.modellnstance

The instance model of resource.
Methods

controller.__before()

It can do some operate like filter field, pagination, access control in magic function _ before .

JavaScript
export default class extends think.controller.rest

__before
// filter password field

this.modelInstance.field('password', true

controller.getAction()

Get resource data, if id exist, then get one, or get the list.

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_controller.html

// function implementation, it can been modified if need.
export default class extends think.controller.rest {
* getAction(){
let data;
if (this.id) {
let pk = yield this.modelInstance.getPk();

data = yield this.modelInstance.where({[pk]: this.id}).find();

return this.success(data);
¥
data = yield this.modelInstance.select();

return this.success(data);

controller.postAction()

Add data.

// function implementation, it can been modified if need.
export default class extends think.controller.rest {
* postAction(){

let pk = yield this.modelInstance.getPk();

let data = this.post();

delete data[pk];

if(think.isEmpty(data)){

return this.fail('data is empty');

¥

let insertId = yield this.modelInstance.add(data);

return this.success({id: insertId});

controller.deleteAction()

Delete data.

// function implementaion, it can been modified if need.
export default class extends think.controller.rest {
* deleteAction(){
if (!this.id) {
return this.fail('params error');

}
let pk = yield this.modelInstance.getPk();

let rows = yield this.modelInstance.where({[pk]: this.id}).delete();

return this.success({affectedRows: rows});

controller.putAction()

Update data.

// function implementaion, it can been modified if need.
export default class extends think.controller.rest {
* putAction(){
if (!this.id) {
return this.fail('params error');
}
let pk = yield this.modelInstance.getPk();
let data = this.post();
delete data[pk];
if (think.isEmpty(data)) {
return this.fail('data is empty');
}

let rows = yield this.modelInstance.where({[pk]: this.id}).update(data);

return this.success({affectedRows: rows});

controller.__call()

JavaScript

JavaScript

JavaScript

JavaScript

Invoked when cannot find function

JavaScript
export default class extends think.controller.rest

_ call
return this.fail(think.locale("'ACTION_INVALID', this.http.action, this.http.url

model

The think.model.base class inherit from think.base class.

Inheritence with ES6:

JavaScript
export default class extends think.model.base

getlList

Inheritence With Normal Way

JavaScript
module.exports = think.model

getList: function

Properties

model.pk

The primary key of databse, defautl is id .
model.name

Model name, default is current file name.

Suppose current file path is for/bar/app/home/model/user.js, then the model name is user .
model.tablePrefix

The Prefiex of table in database, defaultis think .

model.tableName

The name of data table, not contains prefiex name, default equals to model name.
model.fields

The fields of data table, auto analyse the data table.

model.indexes

The indexes of data table, auto analyse the data table.

model.readonlyFields

The readonly fields list, when data updated, these fields will not been updated.
model.config

Config, specify when instancing.

model._db

Handler of connect database.

model._data

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_base.html

Data of operation.

model._options

Options of operation.
Methods

model.model(name, options, module)

e name {String} model name

e options {Object} confing options
e module {String} module name

e return {Object}

Get instance of model, it can read cross module.

JavaScript
export default class extends think.model.base

* getList
// get instance of user model
let instance = this.model('user
let list = yield instance.select
let ids = list.map(item =>

return item.id

let data = yield this.where({id "IN', ids select

return data

model.getTablePrefix()

e return {string}
Get the prefix of table.
model.getConfigKey()

e return {String}
Get config key, use it when cache db handler.
model.db()

e return {Object}
Based on current config to get instance of db, if exist, return directly.
model.getModelName()

e return {String} model name
Return directly if configed, or parse current file name.
model.getTableName()

e return {String} get table name, contains prefix
Get table name, contains prefix.
model.cache(key, timeout)

e key {String} cache key
¢ timeout {Number}cache expire time, the unitis seconds.
e return ({this}

Set cache config.

Set key and time of cache

export default class extends think.model.base {
getList(){

return this.cache('getList', 1000).where({id: {'>': 100}}).select();

-

Only set cache time, cache key auto generate

export default class extends think.model.base {
getList(){
return this.cache(1000).where({id: {'>': 100}}).select();

Set more cache information

export default class extends think.model.base {
getList(){
return this.cache({
key: ‘getlList',
timeout: 1000,
type: 'file' // use file cache
}).where({id: {'>': 100}}).select();

model.limit(offset, length)

e offset {Number} set the start position of query
e length {Number} set the length of query
e return {this}

Set the limit of query result.

Set length of data

export default class extends think.model.base {
getList(){
// query twenty data
return this.limit(20).where({id: {'>': 100}}).select();

-

Limit data start position and length

export default class extends think.model.base {
getList(){
// start from position 100, query twenty data

return this.limit(100, 20).where({id: {'>': 100}}).select();

-

model.page(page, listRows)

o page {Number} current page, start with one
e listRows {Number} number of per page
e return ({this}

Set query pagination data, convertto 1limit data automatically.
export default class extends think.model.base {
getList(){

// query the second page data, ten data of per page.
return this.page(2, 10).where({id: {'>': 100}}).select();

model.where(where)

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

e where {String | Object} where condition
e return {this}

Set where query condition, it can set logic with method logic , defaultis anD . Mulpty query with method ~ complex .

Noatice : 1. example below don’t suit for mengo model.in mongo, seting where condition to seen in model.mongo. 2.where condition need to been validated in Logic, or maybe
cause some bug.

Normal condition

JavaScript
export default class extends think.model.base {
wherel(){
//SELECT * FROM " think_user”
return this.where().select();
}
where2(){
//SELECT * FROM think_user’ WHERE (“id” = 10)
return this.where({id: 10}).select();
}
where3(){
//SELECT * FROM "think_user® WHERE (id = 10 OR id < 2)
return this.where('id = 10 OR id < 2').select();
}
where4(){
//SELECT * FROM "think_user® WHERE (“id" != 10)
return this.where({id: ['!=", 10]}).select();
}
}
null condition
JavaScript
export default class extends think.model.base {
wherel(){
//SELECT * FROM "think_user® where (title IS NULL);
return this.where({title: null}).select();
}
where2(){
//SELECT * FROM "think_user’ where (title IS NOT NULL);
return this.where({title: ['!=", null]}).select();
}
}
EXP condition
ThinkJS will transfer field and value by default for security bugs. sometimes, if not want to transfer in some special case, you can use EXP way, like:
JavaScript
export default class extends think.model.base {
wherel(){
//SELECT * FROM "think_user® WHERE ((“name’ ='name'))
return this.where({name: ['EXP', "=\"name\""]}).select();
}

LIKE condition

JavaScript
export default class extends think.model.base {
wherel(){
//SELECT * FROM "think_user® WHERE (“title’ NOT LIKE ‘'welefen')
return this.where({title: ['NOTLIKE', ‘welefen']}).select();
}
where2(){
//SELECT * FROM "think_user® WHERE (“title’ LIKE '%welefen%')
return this.where({title: ['like', '%welefen%']}).select();
}
//1like mult-value
where3(){
//SELECT * FROM "think_user® WHERE ((" title’ LIKE 'welefen' OR "title’ LIKE 'suredy'))
return this.where({title: ['like', ['welefen', 'suredy']]}).select();
}
// muti-field or relation like one value
where4(){
//SELECT * FROM “think_user’ WHERE ((title’ LIKE '%welefen%') OR (content’ LIKE '%welefen%'))
return this.where({'title|content': ['like', '%welefen%']}).select();
}
// muti-filed and relation like one value
where5(){
//SELECT * FROM ~think_user”™ WHERE (("title’ LIKE '%welefen%') AND (" content™ LIKE '%welefen%'))
return this.where({'title&content': ['like', '%welefen%']}).select();

IN condition

JavaScript
export default class extens think.model.base {
wherel(){
//SELECT * FROM think_user’ WHERE (“id” IN ('10','20'))
return this.where({id: ['IN', '10,20']}).select();
}
where2(){
//SELECT * FROM "think_user® WHERE (“id’ IN (10,20))
return this.where({id: ['IN', [10, 20]]}).select();
}
where3(){
//SELECT * FROM ~think_user® WHERE (~id" NOT IN (10,20))
return this.where({id: ['NOTIN', [1@, 20]]}).select();
}
}
BETWEEN query
JavaScript

export default class extens think.model.base {

wherel(){
//SELECT * FROM think_user’ WHERE ((“id" BETWEEN 1 AND 2))
return this.where({id: ['BETWEEN', 1, 2]}).select();

}

where2(){
//SELECT * FROM "think_user® WHERE (("id” BETWEEN '1' AND ‘2'))
return this.where({id: ['between', '1,2']}).select();

muti-field query

JavaScript
export default class extends think.model.base {

wherel(){
//SELECT * FROM think_user” WHERE (“id" = 10) AND (“title” = 'www')
return this.where({id: 10, title: "www"}).select();

}

// modify logic to OR

where2(){
//SELECT * FROM "think_user® WHERE (“id" = 10) OR (“title’ = "www')
return this.where({id: 10, title: "www", _logic: 'OR'}).select();

}

// modify logic to XOR

where2(){
//SELECT * FROM " think_user® WHERE (“id’ = 10) XOR ("title’ = ‘www')
return this.where({id: 10, title: "www", _logic: 'XOR'}).select();

}

muti-condition query

JavaScript
export default class extends think.model.base {
wherel(){
//SELECT * FROM "think_user’ WHERE (“id> > 1@ AND “id < 20)
return this.where({id: {'>': 10, '<': 20}}).select();
}
// modify logic to OR
where2(){
//SELECT * FROM "think_user® WHERE (“id’ < 1@ OR “id" > 20)
return this.where({id: {'<': 10, '>': 20, _logic: 'OR'}}).select()
}
}
complex query
JavaScript
export default class extends think.model.base {
wherel(){
//SELECT * FROM "think_user® WHERE ("title’ = 'test') AND ((“id" IN (1,2,3)) OR (“content’ = 'www'))
return this.where({
title: 'test’,
_complex: {id: ["IN', [1, 2, 3]],
content: "www',
_logic: ‘or'
}
}) .select()
}
}
model.field(field)
e field {String| Array} set query field, can be string or array
e return {this}
Set query field.
String way
JavaScript

export default class extends think.controller.base {
async indexAction(){
let model = this.model('user');
// set string need to queyr, in string way, use comma to split
let data = await model.field('name,title’).select();

Invoke SQL function

export default class extends think.controller.base

// invoke sql function in field
async listAction

let model = this.model('user

let data = await model.field('id, INSTR(\'30,35,31,\',id + \',\') as d'

array way

export default class extends think.controller.base

async indexAction
let model = this.model('user

// set query string in array way

let data = await model.field(['name’, 'title’

model.fieldReverse(field)

e field {String | Array} reverse field, means query except this field

e return {this}

Set reverse field, it will filter this filed when querying, it support string way and array way.

model.table(table, hasPrefix)

e table {String}table way

e hasprefix {Boolean} whether tabel has prefix or not, if table value contains space, then don’t add prefix.

e return {this}

Set table name, which can named a SQL statement.

Set current table name

export default class extends think.model.base
getlList

return this.table('test', true).select

SQL statement as table name

export default class extends think.model.base

async getlList

let sql = await this.model('group').group(‘name"’

let data = await this.table(sql).select
return data

model.union(union, all)

select

buildsql

e union {String | Object} union query SQL or table name

e all {Boolean} Whetheris UNION ALL way or not

e return {this}
Union query.

SQL union queryB¥&&if)

export default class extends think.model.base
getlList

//SELECT * FROM "think_user® UNION (SELECT * FROM think_pic2)
return this.union('SELECT * FROM think_pic2'

union query table name

select

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript
export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user’ UNION ALL (SELECT * FROM "think_pic2’)
return this.union({table: 'think_pic2'}, true).select();

model.join(join)

e join {String | Object | Array} conbine statement, defaultis LEFT JOIN
e return {this}

Conbine query, support string, array, object and so on.

String

JavaScript
export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user® LEFT JOIN think_cate ON think_group.cate_id=think_cate.id
return this.join('think_cate ON think_group.cate_id=think_cate.id").select();

}
¥
Array
JavaScript
export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user® LEFT JOIN think_cate ON think_group.cate_id=think_cate.id RIGHT JOIN think_tag ON think_group.tag_id=think_tag.id
return this.join([
"think_cate ON think_group.cate_id=think_cate.id’,
'RIGHT JOIN think_tag ON think_group.tag_id=think_tag.id'
1) .select();
}
¥

Obiject: single table

JavaScript
export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user”™ INNER JOIN "think_cate’ AS c ON think_user. cate_id =c. id
return this.join({
table: 'cate',
join: ‘inner', //join way, contains left, right, inner three ways
as: 'c', // table alias name
on: ['cate_id', 'id'] //ON condition
}).select();

Object: multi-JOIN

JavaScript
export default class extends think.model.base {
getList(){
//SELECT * FROM think_user AS a LEFT JOIN "think_cate® AS c ON a. cate_id =c. id" LEFT JOIN
return this.alias('a').join({
table: 'cate',
join: 'left',

“think_group_tag® AS d ON a. id =d. group_id"

as: 'c',

on: ['cate_id', 'id']
})-join({

table: 'group_tag',

join: 'left’,

as: 'd',

on: ['id', 'group_id']
}).select()

Object: muti-table

JavaScript
export default class extends think.model.base {

getList(){
//SELECT * FROM "think_user”™ LEFT JOIN "think_cate’ ON think_user. id =think_cate. id" LEFT JOIN "think_group_tag" ON think_user. id =think_group_tag. group_id"
return this.join({
cate: {
on: ['id', 'id']

1
group_tag: {
on: ['id', 'group_id']
}
}).select();
}
}
JavaScript
export default class extends think.model.base {
getList(){
//SELECT * FROM think_user AS a LEFT JOIN "think_cate® AS ¢ ON a. id =c. id" LEFT JOIN "think_group_tag" AS d ON a. id =d. group_id"
return this.alias('a').join({
cate: {
join: 'left', // has left,right,inner three values
as: 'c',
on: ['id', 'id']
1
group_tag: {
join: 'left’,
as: 'd',
on: ['id', 'group_id']
}
}).select()
}
}
Object: ON condition has muti-field
JavaScript

export default class extends think.model.base {
getlist(){
//SELECT * FROM "think_user™ LEFT JOIN "think_cate™ ON think_user. id =think_cate. id" LEFT JOIN "think_group_tag"™ ON think_user. id =think_group_tag. group_id" L
return this.join({
cate: {on: 'id, id'},
group_tag: {on: ['id', 'group_id']},
tag: {
on: { // multi-field's ON
id: ‘'id',

title: ‘'name’

}
}).select()

Object: table value is SQL statement
JavaScript
export default class extends think.model.base {
async getlist(){
let sql = await this.model('group').buildSql();
//SELECT * FROM “think_user® LEFT JOIN (SELECT * FROM "think_group™) ON think_user. gid =(SELECT * FROM "think_group™). id"
return this.join({
table: sql,
on: ['gid', 'id']
}).select();

model.order(order)

e order {String!| Array | Object} sort order
e return {this}

Set sort order.

String

export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user® ORDER BY id DESC, name ASC
return this.order('id DESC, name ASC').select();
}
getList1(){
//SELECT * FROM "think_user® ORDER BY count(num) DESC

return this.order('count(num) DESC").select();

Array

export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user® ORDER BY id DESC,name ASC
return this.order(['id DESC', 'name ASC']).select();

Object

export default class extends think.model.base {
getList(){
//SELECT * FROM "think_user® ORDER BY “id" DESC, name’ ASC
return this.order({
id: 'DESC',
name: 'ASC’
}).select();

model.alias(tableAlias)

e tablealias {String}table alias name
e return ({this}

Set tabel alias name.

export default class extends think.model.base {
getList(){
//SELECT * FROM think_user AS a;
return this.alias('a').select();

model.having(having)

e having {String} query string with having
e return {this}

Set having query.

export default class extends think.model.base {
getList(){

//SELECT * FROM "think_user® HAVING view_nums > 1000 AND view_nums < 2000
return this.having('view_nums > 1000 AND view_nums < 2000').select();

model.group(group)

e group {String} group query field
e return {this}

Set group query.

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

export default class extends think.model.base
getList
//SELECT * FROM "think_user® GROUP BY "name’

return this.group('name').select

model.distinct(distinct)

e distinct {String} distinct field
e return ({this}

Distinct field

export default class extends think.model.base
getlList
//SELECT DISTINCT “name’ FROM " think_user’

return this.distinct('name').select

model.explain(explain)

e explain {Boolean} Whether add explain execution or not
e return ({this}

Whether add explain execution before SQL for performance of SQL or not.

model.optionsFilter(options)
Options for filter.
model.dataFilter(data)

e data {Object| Array} data to operate
Filter data.
model.beforeAdd(data)

e data {Object}data will add
Add before operate.
model.afterAdd(data)

e data {Object}data will add
Add after data.
model.afterDelete(data)
Delete after operation.
model.beforeUpdate(data)

e data {Object}data will add
Update before operation.
model.afterUpdate(data)

e data {Object}data will add
Update after operation.
model.afterFind(data)

e data {Object} single data to query
e return {Object| Promise}

After find query operation.

JavaScript

JavaScript

model.afterSelect(data)

e data [Array] data to query
e return {Array|Promise}

After select query operation.
model.data(data)

e data {Object}
The data which to added and updated.
model.options(options)

e options {Object}

Config operate options, like:

export default class extends think.model.base
getList
return this.options
where: 'id = 1'
limit: [10, 1

select

model.close()

About database connection, normally donot invoke directly.

model.getTableFields(table)

e table {String}table name
e return {Promise}

Get table filed information, read from database directly.
model.getLastSql()

e return {String}
Get the last SQL statement.
model.buildSql()

e return {Promise}
Make current query condition to generate a SQL statement.
model.parseOptions(oriOpts, extraOptions)

e oriopts {Object}

e extraOptions {Object}
e return {Promise}

Options which are based on some conditions to parse current operation.

model.getPk()
e return {Promise}

Return value of pk , returning is a Promise.

model.parseType(field, value)

e field {String}the field name of data table
e value {Mixed}
e return {Mixed}

Based on filed type of data table to pase value.

JavaScript

model.parseData(data)

e data {Object}data to pase
e return {Object}

Invoke paseType to parse data.

model.add(data, options, replace)

e data {Object}data to add

e options {Object} operate options

e replace {Boolean}whether is replace or not
e return {Promise} return inserted ID

add one data.

model.thenAdd(data, where)

e data {Object}data to add
e where {Object} where condition
e return {Promise}

When where condition didn’t passed any data then to add data.

model.addMany(dataList, options, replace)

e dataList {Array}data list to add

e options {Object} operate options

e replace {Boolean}is replace or not

e return {Promise} return the inserted ID

Add many data in one time.

model.delete(options)

e options {Object} operate options
e return {Promise}return affected row

Delete data.

model.update(data, options)

e data {Object}data to update
e options {Object} operate options
e return {Promise} return affected rows

Updata data.

updateMany(dataList, options)

e dataList {Array}data to update
e options {Object} operate options
e return {Promise}

Update multi-data, dataList must contains value of primay key, it will set to update condition automatically.

model.increment(field, step)

e field {String}field name
e step {Number}add value, default is 1
e return {Promise}

Increase value of field.

model.decrement(field, step)

e field {String}field name
e step {Number} decrease value, default is 1
e return {Promise}

Decrease value of field.

model.find(options)

e options {Object} operate options
e return {Promise}return one data

Query one data, type of data is object, if there is not result, return {} .

model.select(options)

e options {Object} operate options
e return {Promise}return multi-data

Query one data, type of data is array, if there is not result, return [] .

model.countSelect(options, pageFlag)

e options {Object} operate options
e pageFlag {Boolean}if page number is illegal, true means changed to first page, false means changed to last page, default is no change.
e return {Promise}

Page query, normally need to use with page , like:

JavaScript
export default class extends think.controller.base
async listAction
let model = this.model('user’
let data = await model.page(this.get('page’ countSelect
returned data structure like this below:
JavaScript

numsPerPage: 10, //ET1ERAIZEE
currentPage: 1, //HEIT

count: 100, //EFEE

totalPages: 10, ///&H01%1

data // HEITT T AUEIES R
name: "thinkjs"

email: "admin@thinkjs.org"

model.getField(field, one)

e field {String} field name, split with comma
e one {Boolean | Number} the number of result
e return {Promise}

Get value of specify field.

model.count(field)

e field {String}field name
e return {Promise} return the number of fields

Get the number of fields.

model.sum(field)

e field {String}field name
e return {Promise}

Get the sum of field value

model.min(field)

e field {String}field name
e return {Promise}

Get the minimum of field

model.max(field)

e field {String} field name
e return {Promise}

Get the maximum of field
model.avg(field)

e field {String}field name
e return {Promise}

Get the avg of field
model.query(...args)

e return {Promise}
Specify SQL statement to query.
model.execute(...args)

e return {Promise}
Execute SQL statement.
model.parseSql(sql, ...args)

e sgl {String}to parsed SQL statement
e return {String}

Paser SQL statement, invoke util.format to parse SQL statement, and parse

export default class extends think.model.base
getSql
let sql = 'SELECT * FROM _ GROUP__ WHERE id=%d’
sql = this.parseSql(sql, 10
//sql is SELECT * FROM think_group WHERE id=10

model.startTrans()

e return {Promise}
Start transaction.
model.commit()

e return {Promise}
Commit transaction.
model.rollback()

e return {Promise}
rollback transaction.
model.transaction(fn)

e fn {Function}to executed function
e return {Promise}

Use transaction to execute passed function, which must return Promise.

_ TABLENAME__ of SQL statement to tabel name.

JavaScript

export default class extends think.model.base
updateData(data
return this.transaction(async =>
let insertId = await this.add(data
let result = await this.model('user_cate').add({user_id: insertId, cate_id

return result

MongoDB

The think.model.mongo class inherit from think.model.base,
Inheritence with ES6:6

export default class extends think.model.mongo
getList

Inheritence With Normal Way

module.exports = think.model('mongo’
getList: function

Method

model.indexes

Set indexes of field, before operate data it will set index automatically.

export default class extends think.model.mongo
init args
super.init args
// set indexes

this.indexes =

Single field index

export default class extends think.model.mongo
init args
super.init args
// set index
this.indexes =

name: 1

Unique index

With sunique to set unique index, like:

100

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_model.html

export default class extends think.model.mongo
init args
super.init args
// set index
this.indexes =

name: {$unique: 1

Multi-field index

Multi-field index, like:

export default class extends think.model.mongo
init args
super.init args
// set index
this.indexes =
email: 1
test
name: 1
title: 1
$unique: 1

model.pk

Primary key name, defaultis _id , getitwith this.getPk .

Function

model.where(where)

Where condition in mongo model is different from relational database.

equal condition

export default class extends think.model.mongo
wherel

return this.where({ type: "snacks" select

AND condition

export default class extends think.model.mongo
wherel

return this.where({ type: 'food', price $1t: 9.95

OR condition

export default class extends think.model.mongo
wherel
return this.where
$or qty $gt: 100 price $1t: 9.95
select

where2
return this.where
type: 'food'
$or qty $gt: 100 price $1t: 9.95
select

select

JavaScript

JavaScript

JavaScript

JavaScript

JavaScript

Inserted document

JavaScript
export default class extends think.model.mongo {
wherel(){
return this.where({
producer:
{
company: 'ABC123',
address: '123 Street'

}

}).select();
1
J
where2(){

return this.where({ 'producer.company': 'ABC123' }).select();

IN condition

JavaScript
export default class extends think.model.mongo {

wherel(){

return this.where({ type: { $in: ['food', 'snacks'] } }).select();

-

More details in https://docs.mongodb.org/manual/reference/operator/query/#query-selectors,,

model.collection()
e return {Promise}

Get handler which operate current table.

JavaScript
export default class extends think.model.mongo {

async getIndexes(){
let collection = await this.collection();

return collection.indexes();

model.aggregate(options)

Aggregate query, more details in hitps://docs.mongodb.org/manual/core/aggregation-introduction/,

model.mapReduce(map, reduce, out)

mapReduce operate, more details in htips://docs.mongodb.org/manual/core/map-reduce/,

model.createlndex(indexes, options)

e indexes {Object}index options
e options {Object}

Create indexes.
model.getindexes()

e return {Promise}

Get indexes.

middleware

The think.middleware.base class inherit from think.http.base,

Inheritence with ES6:

https://docs.mongodb.org/manual/reference/operator/query/#query-selectors
https://docs.mongodb.org/manual/core/aggregation-introduction/
https://docs.mongodb.org/manual/core/map-reduce/
file:///Users/welefen/Develop/git/www.thinkjs.org/www/static/module/thinkjs/api_think_http_base.html

JavaScript
export default class extends think.middleware.base

run

Dynamic Creating Class

JavaScript
module.exports = think.middleware

run: function

Methods

middleare.run()
e return {Promise}

middleware exported entrance, invoke this function when calling middleware.

